1
|
Merdzo Z, Narmontaite E, Gonzalez-Alfonso JL, Poveda A, Jimenez-Barbero J, Plou FJ, Fernández-Lobato M. Insights into the transglucosylation activity of α-glucosidase from Schwanniomyces occidentalis. Appl Microbiol Biotechnol 2024; 108:443. [PMID: 39153091 PMCID: PMC11330417 DOI: 10.1007/s00253-024-13262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
The α-glucosidase from Schwanniomyces occidentalis (GAM1p) was expressed in Komagataella phaffii to about 70 mg/L, and its transferase activity studied in detail. Several isomaltooligosaccharides (IMOS) were formed using 200 g/L maltose. The major production of IMOS (81.3 g/L) was obtained when 98% maltose was hydrolysed, of which 34.8 g/L corresponded to isomaltose, 26.9 g/L to isomaltotriose, and 19.6 g/L to panose. The addition of glucose shifted the IMOS synthesis towards products containing exclusively α(1 → 6)-linkages, increasing the production of isomaltose and isomaltotriose about 2-4 fold, enabling the formation of isomaltotetraose, and inhibiting that of panose to about 12 times. In addition, the potential of this enzyme to glycosylate 12 possible hydroxylated acceptors, including eight sugars and four phenolic compounds, was evaluated. Among them, only sucrose, xylose, and piceid (a monoglucosylated derivative of resveratrol) were glucosylated, and the main synthesised products were purified and characterised by MS and NMR. Theanderose, α(1 → 4)-D-glucosyl-xylose, and a mixture of piceid mono- and diglucoside were obtained with sucrose, xylose, and piceid as acceptors, respectively. Maximum production of theanderose reached 81.7 g/L and that of the glucosyl-xylose 26.5 g/L, whereas 3.4 g/L and only 1 g/L were produced of the piceid mono- and diglucoside respectively. KEY POINTS: • Overexpression of a yeast α-glucosidase producing novel molecules. • Yeast enzyme producing the heterooligosaccharides theanderose and glucosyl-xylose. • Glycosylation of the polyphenol piceid by a yeast α-glucosidase.
Collapse
Affiliation(s)
- Zoran Merdzo
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain
| | - Egle Narmontaite
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain
| | | | - Ana Poveda
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Jesus Jimenez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Ikerbasque. Basque Foundation for Science, 48009, Bilbao, Spain
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica (CSIC), C/ Marie Curie, 2., 28049, Madrid, Spain
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Garcia-Gonzalez M, Narmontaite E, Cervantes FV, Plou FJ, Betancor L, Fernandez-Lobato M. Continuous production of honey oligosaccharides in packed-bed reactors with immobilized α-glucosidase from Metschnikowia reukaufii. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Structural Insight into a Yeast Maltase-The BaAG2 from Blastobotrys adeninivorans with Transglycosylating Activity. J Fungi (Basel) 2021; 7:jof7100816. [PMID: 34682239 PMCID: PMC8539097 DOI: 10.3390/jof7100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
An early-diverged yeast, Blastobotrys (Arxula) adeninivorans (Ba), has biotechnological potential due to nutritional versatility, temperature tolerance, and production of technologically applicable enzymes. We have biochemically characterized from the Ba type strain (CBS 8244) the GH13-family maltase BaAG2 with efficient transglycosylation activity on maltose. In the current study, transglycosylation of sucrose was studied in detail. The chemical entities of sucrose-derived oligosaccharides were determined using nuclear magnetic resonance. Several potentially prebiotic oligosaccharides with α-1,1, α-1,3, α-1,4, and α-1,6 linkages were disclosed among the products. Trisaccharides isomelezitose, erlose, and theanderose, and disaccharides maltulose and trehalulose were dominant transglycosylation products. To date no structure for yeast maltase has been determined. Structures of the BaAG2 with acarbose and glucose in the active center were solved at 2.12 and 2.13 Å resolution, respectively. BaAG2 exhibited a catalytic domain with a (β/α)8-barrel fold and Asp216, Glu274, and Asp348 as the catalytic triad. The fairly wide active site cleft contained water channels mediating substrate hydrolysis. Next to the substrate-binding pocket an enlarged space for potential binding of transglycosylation acceptors was identified. The involvement of a Glu (Glu309) at subsite +2 and an Arg (Arg233) at subsite +3 in substrate binding was shown for the first time for α-glucosidases.
Collapse
|
4
|
Berrocal C, Chico H, Carranza E, Vega R. Desirability function for optimization of the synthesis of high-panose isomaltooligosaccharides from maltose catalyzed by a novel commercial enzyme preparation from Aspergillus niger. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Kumar S, Mutturi S. Expression of a novel α-glucosidase from Aspergillus neoniger in Pichia pastoris and its efficient recovery for synthesis of isomaltooligosaccharides. Enzyme Microb Technol 2020; 141:109653. [DOI: 10.1016/j.enzmictec.2020.109653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023]
|
6
|
In vitro digestibility of commercial and experimental isomalto-oligosaccharides. Food Res Int 2020; 134:109250. [DOI: 10.1016/j.foodres.2020.109250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023]
|
7
|
Garcia-Gonzalez M, Minguet-Lobato M, Plou FJ, Fernandez-Lobato M. Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars. Microb Cell Fact 2020; 19:140. [PMID: 32652991 PMCID: PMC7353701 DOI: 10.1186/s12934-020-01397-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND α-Glucosidases are widely distributed enzymes with a varied substrate specificity that are traditionally used in biotechnological industries based on oligo- and polysaccharides as starting materials. According to amino acid sequence homology, α-glucosidases are included into two major families, GH13 and GH31. The members of family GH13 contain several α-glucosidases with confirmed hydrolytic activity on sucrose. Previously, a sucrose splitting activity from the nectar colonizing yeast Metschnikowia reukaufii which produced rare sugars with α-(1→1), α-(1→3) and α-(1→6) glycosidic linkages from sucrose was described. RESULTS In this study, genes codifying for α-glucosidases from the nectaries yeast M. gruessii and M. reukaufii were characterised and heterologously expressed in Escherichia coli for the first time. Recombinant proteins (Mg-αGlu and Mr-αGlu) were purified and biochemically analysed. Both enzymes mainly displayed hydrolytic activity towards sucrose, maltose and p-nitrophenyl-α-D-glucopyranoside. Structural analysis of these proteins allowed the identification of common features from the α-amylase family, in particular from glycoside hydrolases that belong to family GH13. The three acidic residues comprising the catalytic triad were identified and their relevance for the protein hydrolytic mechanism confirmed by site-directed mutagenesis. Recombinant enzymes produced oligosaccharides naturally present in honey employing sucrose as initial substrate and gave rise to mixtures with the same products profile (isomelezitose, trehalulose, erlose, melezitose, theanderose and esculose) previously obtained with M. reukaufii cell extracts. Furthermore, the same enzymatic activity was detected with its orthologous Mg-αGlu from M. gruessii. Interestingly, the isomelezitose amounts obtained in reactions mediated by the recombinant proteins, ~ 170 g/L, were the highest reported so far. CONCLUSIONS Mg/Mr-αGlu were heterologously overproduced and their biochemical and structural characteristics analysed. The recombinant α-glucosidases displayed excellent properties in terms of mild reaction conditions, in addition to pH and thermal stability. Besides, the enzymes produced a rare mixture of hetero-gluco-oligosaccharides by transglucosylation, mainly isomelezitose and trehalulose. These compounds are natural constituents of honey which purification from this natural source is quite unviable, what make these enzymes very interesting for the biotechnological industry. Finally, it should be remarked that these sugars have potential applications as food additives due to their suitable sweetness, viscosity and humectant capacity.
Collapse
Affiliation(s)
- Martin Garcia-Gonzalez
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Marina Minguet-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2. Cantoblanco, 28049, Madrid, Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Zhou B, Huang N, Zeng W, Zhang H, Chen G, Liang Z. Development of a strategy for the screening of α-glucosidase-producing microorganisms. J Microbiol 2020; 58:163-172. [PMID: 31993989 DOI: 10.1007/s12275-020-9267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
α-Glucosidase is a crucial enzyme for the production of isomaltooligosaccharide. In this study, a novel method comprising eosin Y (EY) and α-D-methylglucoside (AMG) in glass plates was tested for the primary screening of α-glucosidaseproducing strains. First, α-glucosidase-producing Aspergillus niger strains were selected on plates containing EY and AMG based on transparent zone formation resulting from the solubilization of EY by the hydrolyzed product. Conventional methods that use trypan blue (TB) and p-nitrophenyl-α-D-glucopyranoside (pPNP) as indicators were then compared with the new strategy. The results showed that EY-containing plates provide the advantages of low price and higher specificity for the screening of α-glucosidase-producing strains. We then evaluated the correlation between the hydrolytic activity of α-glucosidase and diffusion distance, and found that good linearity could be established within a 6-75 U/ml enzyme concentration range. Finally, the hydrolytic and transglycosylation activities of α-glucosidase obtained from the target isolates were determined by EY plate assay and 3,5-dinitrosalicylic acid-Saccharomyces cerevisiae assay, respectively. The results showed that the diameter of the transparent zone varied among isolates was positively correlated with α-glucosidase hydrolytic activity, while good linearity could also be established between α-glucosidase transglycosylation activity and non-fermentable reducing sugars content. With this strategy, 7 Aspergillus niger mutants with high yield of α-glucosidase from 200 obvious single colonies on the primary screen plate were obtained.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Nan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Wei Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Hao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
| |
Collapse
|
9
|
Visnapuu T, Meldre A, Põšnograjeva K, Viigand K, Ernits K, Alamäe T. Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans. Int J Mol Sci 2019; 21:E297. [PMID: 31906253 PMCID: PMC6981392 DOI: 10.3390/ijms21010297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022] Open
Abstract
Genome of an early-diverged yeast Blastobotrys (Arxula) adeninivorans (Ba) encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the rna_ARAD1D20130g-encoded protein (BaAG2; 581 aa) was overexpressed in Escherichia coli, purified and characterized. We showed that maltose, other maltose-like substrates (maltulose, turanose, maltotriose, melezitose, malto-oligosaccharides of DP 4‒7) and sucrose were hydrolyzed by BaAG2, whereas isomaltose and isomaltose-like substrates (palatinose, α-methylglucoside) were not, confirming that BaAG2 is a maltase. BaAG2 was competitively inhibited by a diabetes drug acarbose (Ki = 0.8 µM) and Tris (Ki = 70.5 µM). BaAG2 was competitively inhibited also by isomaltose-like sugars and a hydrolysis product-glucose. At high maltose concentrations, BaAG2 exhibited transglycosylating ability producing potentially prebiotic di- and trisaccharides. Atypically for yeast maltases, a low but clearly recordable exo-hydrolytic activity on amylose, amylopectin and glycogen was detected. Saccharomyces cerevisiae maltase MAL62, studied for comparison, had only minimal ability to hydrolyze these polymers, and its transglycosylating activity was about three times lower compared to BaAG2. Sequence identity of BaAG2 with other maltases was only moderate being the highest (51%) with the maltase MalT of Aspergillus oryzae.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.V.); (A.M.); (K.P.); (K.V.); (K.E.)
| |
Collapse
|
10
|
Garcia‐Gonzalez M, Plou FJ, Cervantes FV, Remacha M, Poveda A, Jiménez‐Barbero J, Fernandez‐Lobato M. Efficient production of isomelezitose by a glucosyltransferase activity in Metschnikowia reukaufii cell extracts. Microb Biotechnol 2019; 12:1274-1285. [PMID: 31576667 PMCID: PMC6801145 DOI: 10.1111/1751-7915.13490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Metschnikowia reukaufii is a widespread yeast able to grow in the plants' floral nectaries, an environment of extreme conditions with sucrose concentrations exceeding 400 g l-1 , which led us into the search for enzymatic activities involved in this sugar use/transformation. New oligosaccharides were produced by transglucosylation processes employing M. reukaufii cell extracts in overload-sucrose reactions. These products were purified and structurally characterized by MS-ESI and NMR techniques. The reaction mixture included new sugars showing a great variety of glycosidic bonds including α-(1→1), α-(1→3) and α-(1→6) linkages. The main product synthesized was the trisaccharide isomelezitose, whose maximum concentration reached 81 g l-1 , the highest amount reported for any unmodified enzyme or microbial extract. In addition, 51 g l-1 of the disaccharide trehalulose was also produced. Both sugars show potential nutraceutical and prebiotic properties. Interestingly, the sugar mixture obtained in the biosynthetic reactions also contained oligosaccharides such as esculose, a rare trisaccharide with no previous NMR structure elucidation, as well as erlose, melezitose and theanderose. All the sugars produced are naturally found in honey. These compounds are of biotechnological interest due to their potential food, cosmeceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Martin Garcia‐Gonzalez
- Centro de Biología Molecular Severo OchoaDepartamento de Biología Molecular (UAM‐CSIC)Universidad Autónoma de MadridCampus Cantoblanco28049MadridSpain
| | | | | | - Miguel Remacha
- Centro de Biología Molecular Severo OchoaDepartamento de Biología Molecular (UAM‐CSIC)Universidad Autónoma de MadridCampus Cantoblanco28049MadridSpain
| | - Ana Poveda
- Centro de Investigación Cooperativa en BiocienciasParque Científico Tecnológico de Bizkaia48160DerioBiscaySpain
| | - Jesús Jiménez‐Barbero
- Centro de Investigación Cooperativa en BiocienciasParque Científico Tecnológico de Bizkaia48160DerioBiscaySpain
| | - Maria Fernandez‐Lobato
- Centro de Biología Molecular Severo OchoaDepartamento de Biología Molecular (UAM‐CSIC)Universidad Autónoma de MadridCampus Cantoblanco28049MadridSpain
| |
Collapse
|
11
|
Heterologous Expression of a Thermostable α-Glucosidase from Geobacillus sp. Strain HTA-462 by Escherichia coli and Its Potential Application for Isomaltose⁻Oligosaccharide Synthesis. Molecules 2019; 24:molecules24071413. [PMID: 30974879 PMCID: PMC6479687 DOI: 10.3390/molecules24071413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/09/2023] Open
Abstract
Isomaltose-oligosaccharides (IMOs), as food ingredients with prebiotic functionality, can be prepared via enzymatic synthesis using α-glucosidase. In the present study, the α-glucosidase (GSJ) from Geobacillus sp. strain HTA-462 was cloned and expressed in Escherichia coli BL21 (DE3). Recombinant GSJ was purified and biochemically characterized. The optimum temperature condition of the recombinant enzyme was 65 °C, and the half-life was 84 h at 60 °C, whereas the enzyme was active over the range of pH 6.0-10.0 with maximal activity at pH 7.0. The α-glucosidase activity in shake flasks reached 107.9 U/mL and using 4-Nitrophenyl β-D-glucopyranoside (pNPG) as substrate, the Km and Vmax values were 2.321 mM and 306.3 U/mg, respectively. The divalent ions Mn2+ and Ca2+ could improve GSJ activity by 32.1% and 13.8%. Moreover, the hydrolysis ability of recombinant α-glucosidase was almost the same as that of the commercial α-glucosidase (Bacillus stearothermophilus). In terms of the transglycosylation reaction, with 30% maltose syrup under the condition of 60 °C and pH 7.0, IMOs were synthesized with a conversion rate of 37%. These studies lay the basis for the industrial application of recombinant α-glucosidase.
Collapse
|
12
|
Chen P, Xu R, Wang J, Wu Z, Yan L, Zhao W, Liu Y, Ma W, Shi X, Li H. Starch biotransformation into isomaltooligosaccharides using thermostable alpha-glucosidase from Geobacillus stearothermophilus. PeerJ 2018; 6:e5086. [PMID: 29942709 PMCID: PMC6015754 DOI: 10.7717/peerj.5086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
The present study first identified the biotransformation of starch as a novel preparation method was investigated using the alpha-transglucosidase-producing Geobacillus stearothermophilus U2. Subsequently, 5 L- and 20 L-scale fermentations were performed. After isolation and purification, liquid alpha-glucosidase preparations were obtained. Through covalent cross-linking and adsorption cross-linking using chitosan as the carrier and glutaraldehyde as the crosslinking agent, the conditions for immobilization of alpha-glucosidase on chitosan were determined. Moreover, Isomaltooligosaccharides (IMOs) were then prepared using chitosan membrane-immobilized alpha-glucosidase, beta-amylase, pullulanase, fungal alpha-amylase and starch as substrate. The mixed syrup that contained IMOs was evaluated and analyzed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). In addition, small-scale preparation of IMOs was performed. These results are a strong indication that the alpha-transglucosidase-producing G. stearothermophilus as a potential application technique can be successfully used to prepare industrial IMOs.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China.,School of Medicine, Yale University, New Haven, CT, United States of America
| | - Ruixiang Xu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Jianhui Wang
- School of Medicine, Yale University, New Haven, CT, United States of America
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Lei Yan
- College of Life Science and Technology, Heilongjiang August First Land Reclamation University, Heilongjiang, PR China
| | - Wenbin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Xiaofeng Shi
- Gansu Academy of Medical Science, Lanzhou, PR China
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| |
Collapse
|
13
|
Immobilization of the β-fructofuranosidase from Xanthophyllomyces dendrorhous by Entrapment in Polyvinyl Alcohol and Its Application to Neo-Fructooligosaccharides Production. Catalysts 2018. [DOI: 10.3390/catal8050201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
14
|
Casa-Villegas M, Marín-Navarro J, Polaina J. Synthesis of Isomaltooligosaccharides by Saccharomyces cerevisiae Cells Expressing Aspergillus niger α-Glucosidase. ACS OMEGA 2017; 2:8062-8068. [PMID: 30023572 PMCID: PMC6045415 DOI: 10.1021/acsomega.7b01189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
The α-glucosidase encoded by the aglA gene of Aspergillus niger is a secreted enzyme belonging to family 31 of glycoside hydrolases. This enzyme has a retaining mechanism of action and displays transglycosylating activity that makes it amenable to be used for the synthesis of isomaltooligosaccharides (IMOs). We have expressed the aglA gene in Saccharomyces cerevisiae under control of a galactose-inducible promoter. Recombinant yeast cells expressing the aglA gene produced extracellular α-glucosidase activity about half of which appeared cell bound whereas the other half was released into the culture medium. With maltose as the substrate, panose is the main transglycosylation product after 8 h of incubation, whereas isomaltose is predominant after 24 h. Isomaltose also becomes predominant at shorter times if a mixture of maltose and glucose is used instead of maltose. To facilitate IMO production, we have designed a procedure by which yeast cells can be used directly as the catalytic agent. For this purpose, we expressed in S. cerevisiae gene constructs in which the aglA gene is fused to glycosylphosphatidylinositol anchor sequences, from the yeast SED1 gene, that determine the covalent binding of the hybrid protein to the cell membrane. The resulting hybrid enzymes were stably attached to the cell surface. The cells from cultures of recombinant yeast strains expressing aglA-SED1 constructions can be used to produce IMOs in successive batches.
Collapse
Affiliation(s)
- Mary Casa-Villegas
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
| | - Julia Marín-Navarro
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
- Departamento
de Bioquímica y Biología Molecular, Universidad de Valencia, 46100-Burjassot, Valencia, Spain
| | - Julio Polaina
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
| |
Collapse
|
15
|
Córdova P, Alcaíno J, Bravo N, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V. Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous: the role of the transcriptional co-repressor complex Cyc8-Tup1 involved in catabolic repression. Microb Cell Fact 2016; 15:193. [PMID: 27842591 PMCID: PMC5109733 DOI: 10.1186/s12934-016-0597-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The yeast Xanthophyllomyces dendrorhous produces carotenoids of commercial interest, including astaxanthin and β-carotene. Although carotenogenesis in this yeast and the expression profiles of the genes controlling this pathway are known, the mechanisms regulating this process remain poorly understood. Several studies have demonstrated that glucose represses carotenogenesis in X. dendrorhous, suggesting that this pathway could be regulated by catabolic repression. Catabolic repression is a highly conserved regulatory mechanism in eukaryotes and has been widely studied in Saccharomyces cerevisiae. Glucose-dependent repression is mainly observed at the transcriptional level and depends on the DNA-binding regulator Mig1, which recruits the co-repressor complex Cyc8-Tup1, which then represses the expression of target genes. In this work, we studied the regulation of carotenogenesis by catabolic repression in X. dendrorhous, focusing on the role of the co-repressor complex Cyc8-Tup1. RESULTS The X. dendrorhous CYC8 and TUP1 genes were identified, and their functions were demonstrated by heterologous complementation in S. cerevisiae. In addition, cyc8 - and tup1 - mutant strains of X. dendrorhous were obtained, and both mutations were shown to prevent the glucose-dependent repression of carotenogenesis in X. dendrorhous, increasing the carotenoid production in both mutant strains. Furthermore, the effects of glucose on the transcript levels of genes involved in carotenogenesis differed between the mutant strains and wild-type X. dendrorhous, particularly for genes involved in the synthesis of carotenoid precursors, such as HMGR, idi and FPS. Additionally, transcriptomic analyses showed that cyc8 - and tup1 - mutations affected the expression of over 250 genes in X. dendrorhous. CONCLUSIONS The CYC8 and TUP1 genes are functional in X. dendrorhous, and their gene products are involved in catabolic repression and carotenogenesis regulation. This study presents the first report involving the participation of Cyc8 and Tup1 in carotenogenesis regulation in yeast.
Collapse
Affiliation(s)
- Pamela Córdova
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Natalia Bravo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma Madrid, Campus de Cantoblanco, calle Nicolás Cabrera No 1, Cantoblanco, 28049 Madrid, Spain
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| |
Collapse
|
16
|
Gozu Y, Ishizaki Y, Hosoyama Y, Miyazaki T, Nishikawa A, Tonozuka T. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae. Biosci Biotechnol Biochem 2016; 80:1562-7. [DOI: 10.1080/09168451.2016.1182852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.
Collapse
Affiliation(s)
- Yoshifumi Gozu
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yuichi Ishizaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yuhei Hosoyama
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|