1
|
Mierke F, Brink DP, Norbeck J, Siewers V, Andlid T. Functional genome annotation and transcriptome analysis of Pseudozyma hubeiensis BOT-O, an oleaginous yeast that utilizes glucose and xylose at equal rates. Fungal Genet Biol 2023; 166:103783. [PMID: 36870442 DOI: 10.1016/j.fgb.2023.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Pseudozyma hubeiensis is a basidiomycete yeast that has the highly desirable traits for lignocellulose valorisation of being equally efficient at utilization of glucose and xylose, and capable of their co-utilization. The species has previously mainly been studied for its capacity to produce secreted biosurfactants in the form of mannosylerythritol lipids, but it is also an oleaginous species capable of accumulating high levels of triacylglycerol storage lipids during nutrient starvation. In this study, we aimed to further characterize the oleaginous nature of P. hubeiensis by evaluating metabolism and gene expression responses during storage lipid formation conditions with glucose or xylose as a carbon source. The genome of the recently isolated P. hubeiensis BOT-O strain was sequenced using MinION long-read sequencing and resulted in the most contiguous P. hubeiensis assembly to date with 18.95 Mb in 31 contigs. Using transcriptome data as experimental support, we generated the first mRNA-supported P. hubeiensis genome annotation and identified 6540 genes. 80% of the predicted genes were assigned functional annotations based on protein homology to other yeasts. Based on the annotation, key metabolic pathways in BOT-O were reconstructed, including pathways for storage lipids, mannosylerythritol lipids and xylose assimilation. BOT-O was confirmed to consume glucose and xylose at equal rates, but during mixed glucose-xylose cultivation glucose was found to be taken up faster. Differential expression analysis revealed that only a total of 122 genes were significantly differentially expressed at a cut-off of |log2 fold change| ≥ 2 when comparing cultivation on xylose with glucose, during exponential growth and during nitrogen-starvation. Of these 122 genes, a core-set of 24 genes was identified that were differentially expressed at all time points. Nitrogen-starvation resulted in a larger transcriptional effect, with a total of 1179 genes with significant expression changes at the designated fold change cut-off compared with exponential growth on either glucose or xylose.
Collapse
Affiliation(s)
- Friederike Mierke
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
2
|
Lucaroni AC, Dresch AP, Fogolari O, Giehl A, Treichel H, Bender JP, Mibielli GM, Alves SL. Effects of Temperature and pH on Salt-Stressed Yeast Cultures in Non-Detoxified Coconut Hydrolysate. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana C. Lucaroni
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Aline P. Dresch
- Laboratory of Solid Waste, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Odinei Fogolari
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Solid Waste, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Anderson Giehl
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - João P. Bender
- Laboratory of Solid Waste, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Sérgio L. Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
3
|
The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345. Appl Microbiol Biotechnol 2019; 103:2845-2855. [DOI: 10.1007/s00253-019-09625-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/18/2018] [Accepted: 12/16/2018] [Indexed: 11/25/2022]
|
4
|
Endalur Gopinarayanan V, Nair NU. Pentose Metabolism in Saccharomyces cerevisiae: The Need to Engineer Global Regulatory Systems. Biotechnol J 2019; 14:e1800364. [PMID: 30171750 PMCID: PMC6452637 DOI: 10.1002/biot.201800364] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Extending the host substrate range of industrially relevant microbes, such as Saccharomyces cerevisiae, has been a highly-active area of research since the conception of metabolic engineering. Yet, rational strategies that enable non-native substrate utilization in this yeast without the need for combinatorial and/or evolutionary techniques are underdeveloped. Herein, this review focuses on pentose metabolism in S. cerevisiae as a case study to highlight the challenges in this field. In the last three decades, work has focused on expressing exogenous pentose metabolizing enzymes as well as endogenous enzymes for effective pentose assimilation, growth, and biofuel production. The engineering strategies that are employed for pentose assimilation in this yeast are reviewed, and compared with metabolism and regulation of native sugar, galactose. In the case of galactose metabolism, multiple signals regulate and aid growth in the presence of the sugar. However, for pentoses that are non-native, it is unclear if similar growth and regulatory signals are activated. Such a comparative analysis aids in identifying missing links in xylose and arabinose utilization. While research on pentose metabolism have mostly concentrated on pathway level optimization, recent transcriptomics analyses highlight the need to consider more global regulatory, structural, and signaling components.
Collapse
Affiliation(s)
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, U.S.A
| |
Collapse
|
5
|
Oehling V, Klaassen P, Frick O, Dusny C, Schmid A. l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:231. [PMID: 30159031 PMCID: PMC6106821 DOI: 10.1186/s13068-018-1231-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
Collapse
Affiliation(s)
- Verena Oehling
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | | | - Oliver Frick
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
- Present Address: Department of Solar Materials, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| | - Christian Dusny
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
- Present Address: Department of Solar Materials, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| | - Andreas Schmid
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
- Present Address: Department of Solar Materials, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| |
Collapse
|
6
|
Ko JK, Jung JH, Altpeter F, Kannan B, Kim HE, Kim KH, Alper HS, Um Y, Lee SM. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain. BIORESOURCE TECHNOLOGY 2018; 256:312-320. [PMID: 29455099 DOI: 10.1016/j.biortech.2018.01.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 05/26/2023]
Abstract
The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production.
Collapse
Affiliation(s)
- Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Je Hyeong Jung
- Center for Natural Products Convergence Research, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Fredy Altpeter
- Agronomy Department, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, IFAS, PO Box 110300, Gainesville, FL 32611, USA
| | - Baskaran Kannan
- Agronomy Department, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, IFAS, PO Box 110300, Gainesville, FL 32611, USA
| | - Ha Eun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM, Yang S. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng 2018; 50:57-73. [PMID: 29627506 DOI: 10.1016/j.ymben.2018.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 12/22/2022]
Abstract
Biorefinery of biomass-based biofuels and biochemicals by microorganisms is a competitive alternative of traditional petroleum refineries. Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for commercial production of desirable bioproducts through metabolic engineering. In this review, we summarize the metabolic engineering progress achieved in Z. mobilis to expand its substrate and product ranges as well as to enhance its robustness against stressful conditions such as inhibitory compounds within the lignocellulosic hydrolysates and slurries. We also discuss a few metabolic engineering strategies that can be applied in Z. mobilis to further develop it as a robust workhorse for economic lignocellulosic bioproducts. In addition, we briefly review the progress of metabolic engineering in Z. mobilis related to the classical synthetic biology cycle of "Design-Build-Test-Learn", as well as the progress and potential to develop Z. mobilis as a model chassis for biorefinery practices in the synthetic biology era.
Collapse
Affiliation(s)
- Xia Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Qiaoning He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yongfu Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jingwen Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Katie Haning
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States.
| | - Yun Hu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu 610041, China.
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu 610041, China.
| | - Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, United States.
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lydia M Contreras
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States.
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
8
|
Coutilization of D-Glucose, D-Xylose, and L-Arabinose in Saccharomyces cerevisiae by Coexpressing the Metabolic Pathways and Evolutionary Engineering. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5318232. [PMID: 28459063 PMCID: PMC5385224 DOI: 10.1155/2017/5318232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/04/2017] [Accepted: 03/20/2017] [Indexed: 11/23/2022]
Abstract
Efficient and cost-effective fuel ethanol production from lignocellulosic materials requires simultaneous cofermentation of all hydrolyzed sugars, mainly including D-glucose, D-xylose, and L-arabinose. Saccharomyces cerevisiae is a traditional D-glucose fermenting strain and could utilize D-xylose and L-arabinose after introducing the initial metabolic pathways. The efficiency and simultaneous coutilization of the two pentoses and D-glucose for ethanol production in S. cerevisiae still need to be optimized. Previously, we constructed an L-arabinose-utilizing S. cerevisiae BSW3AP. In this study, we further introduced the XI and XR-XDH metabolic pathways of D-xylose into BSW3AP to obtain D-glucose, D-xylose, and L-arabinose cofermenting strain. Benefits of evolutionary engineering: the resulting strain BSW4XA3 displayed a simultaneous coutilization of D-xylose and L-arabinose with similar consumption rates, and the D-glucose metabolic capacity was not decreased. After 120 h of fermentation on mixed D-glucose, D-xylose, and L-arabinose, BSW4XA3 consumed 24% more amounts of pentoses and the ethanol yield of mixed sugars was increased by 30% than that of BSW3AP. The resulting strain BSW4XA3 was a useful chassis for further enhancing the coutilization efficiency of mixed sugars for bioethanol production.
Collapse
|