1
|
Anoop PP, Palanisamy T. Non-reactive biochar and Bacillus pumilus RSB17-based healing powder: A sustainable solution for enhanced bacterial viability in self-healing mortar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178635. [PMID: 39884195 DOI: 10.1016/j.scitotenv.2025.178635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Existing mortar uses self-healing powders that are based on mineral admixtures, whose reactive nature negatively impacts bacterial viability and diminishes their effectiveness over time. This study aims to develop non-reactive, sustainable biochar-based healing powders with extended bacterial viability to serve as self-healing admixture in bio-mortar. Biochar from coconut husk, coconut shell, and coconut leaf petiole was evaluated for compatibility with Bacillus pumilus RSB17, emphasizing bacterial growth and calcium carbonate precipitation. Coconut shell biochar demonstrated superior performance and was used to formulate a microbial biochar healing powder. Another healing powder was prepared by lyophilizing the bacterial spore solution without protectants. The shelf life was evaluated for 180 days at 4 °C and 25 °C, demonstrating that microbial biochar healing powder at 4 °C maintained bacterial viability above the 4.5 log CFU/g threshold necessary for effective calcium carbonate precipitation, while lyophilized spore powder stored at 25 °C dropped below the threshold at 90 days. Microbial biochar healing powder stored at 4 °C for 180 days was integrated into the mortar, which healed crack width up to 0.80 mm at 56 days under submerged rainwater maintained at 27 °C ± 2 °C and 85 % ± 5 % relative humidity. Electrical resistivity decreased from 28.16 Ω·m to 21.35 Ω·m, the permeability coefficient dropped from 153.90 mm/s to 0 mm/s, and compressive strength regained 90.53 %, which collectively indicated enhanced self-healing. Microstructural analysis confirmed the stable cuboid calcite crystals with a crystallite size of 86.62 nm. Thus, Microbial biochar healing powder produced from coconut shell biochar and Bacillus pumilus RSB17 and stored at 4 °C is an effective self-healing admixture for bio-mortar applications with a minimum storage period of 180 days.
Collapse
Affiliation(s)
- P P Anoop
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India.
| | - T Palanisamy
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| |
Collapse
|
2
|
Jin M, Yu M, Feng X, Li Y, Zhang M. Characterization and comparative genomic analysis of a marine Bacillus phage reveal a novel viral genus. Microbiol Spectr 2024; 12:e0003724. [PMID: 39162547 PMCID: PMC11448403 DOI: 10.1128/spectrum.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Bacillus pumilus exhibits substantial economic significance, with its metabolism, adaptability, and ecological functions regulated by its bacteriophages. Here, we isolated and characterized a novel temperate phage vB_BpuM-ZY1 from B. pumilus derived from mangrove sediments by mitomycin C induction. Phage vB_BpuM-ZY1 is a typical myophage, which has an icosahedral head with a diameter of 43.34 ± 2.14 nm and a long contractible tail with a length of 238.58 ± 5.18 nm. Genomic analysis indicated that vB_BpuM-ZY1 encodes genes for lysogeny control, and its life cycle may be intricately regulated by multiple mechanisms. vB_BpuM-ZY1 was predicted to employ P2-like 5'-extended-cos packaging strategy. In addition, genome-wide phylogenetic tree and proteome tree analyses indicated that vB_BpuM-ZY1 belongs to the Peduoviridae family but forms a separate branch at a deeper taxonomic level. Particularly, the comparative genomic analysis showed that vB_BpuM-ZY1 has less than 70% intergenomic similarities with its most similar phages. Thus, we propose that vB_BpuM-ZY1 is a novel Bacillus phage belonging to a new genus under the Peduoviridae family. The protein-sharing network analysis identified 44 vB_BpuM-ZY1-related phages. Interestingly, these evolutionarily related myophages infect a broad range of hosts across different phyla, which may be explained by the high structural variations of the host recognition domain in their central spike proteins. Collectively, our study will contribute to our understanding of Bacillus phage diversity and Bacillus-phage interactions, as well as provide essential knowledge for the industrial application of B. pumilus. IMPORTANCE Although recent metagenomics research has obtained a wealth of phage genetic information, much of it is considered "dark matter" because of the lack of similarity with known sequences in the database. Therefore, the isolation and characterization of novel phages will help to interpret the vast unknown viral metagenome data and improve our understanding of phage diversity and phage-host interactions. Bacillus pumilus shows high economic relevance due to its wide applications in biotechnology, industry, biopharma, and environmental sectors. Since phages influence the abundance, metabolism, evolution, fitness, and ecological functions of bacteria through complex interactions, the significance of isolation and characterization of novel phages infecting B. pumilus is apparent. In this study, we isolated and characterized a B. pumilus phage belonging to a novel viral genus, which provides essential knowledge for phage biology as well as the industrial application of B. pumilus.
Collapse
Affiliation(s)
- Min Jin
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Meishun Yu
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xuejin Feng
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yinfang Li
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Menghui Zhang
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Bacillus pumilus 15.1, a Strain Active against Ceratitis capitata, Contains a Novel Phage and a Phage-Related Particle with Bacteriocin Activity. Int J Mol Sci 2021; 22:ijms22158164. [PMID: 34360927 PMCID: PMC8347963 DOI: 10.3390/ijms22158164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
A 98.1 Kb genomic region from B. pumilus 15.1, a strain isolated as an entomopathogen toward C. capitata, the Mediterranean fruit fly, has been characterised in search of potential virulence factors. The 98.1 Kb region shows a high number of phage-related protein-coding ORFs. Two regions with different phylogenetic origins, one with 28.7 Kb in size, highly conserved in Bacillus strains, and one with 60.2 Kb in size, scarcely found in Bacillus genomes are differentiated. The content of each region is thoroughly characterised using comparative studies. This study demonstrates that these two regions are responsible for the production, after mitomycin induction, of a phage-like particle that packages DNA from the host bacterium and a novel phage for B. pumilus, respectively. Both the phage-like particles and the novel phage are observed and characterised by TEM, and some of their structural proteins are identified by protein fingerprinting. In addition, it is found that the phage-like particle shows bacteriocin activity toward other B. pumilus strains. The effect of the phage-like particles and the phage in the toxicity of the strain toward C. capitata is also evaluated.
Collapse
|
4
|
Garcia‐Ramon DC, Berry C, Tse C, Fernández‐Fernández A, Osuna A, Vílchez S. The parasporal crystals of Bacillus pumilus strain 15.1: a potential virulence factor? Microb Biotechnol 2018; 11:302-316. [PMID: 29027367 PMCID: PMC5812249 DOI: 10.1111/1751-7915.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Bacillus pumilus strain 15.1 was previously found to cause larval mortality in the Med-fly Ceratitis capitata and was shown to produce crystals in association with the spore. As parasporal crystals are well-known as invertebrate-active toxins in entomopathogenic bacteria such as Bacillus thuringiensis (Cry and Cyt toxins) and Lysinibacillus sphaericus (Bin and Cry toxins), the B. pumilus crystals were characterized. The crystals were composed of a 45 kDa protein that was identified as an oxalate decarboxylase by peptide mass fingerprinting, N-terminal sequencing and by comparison with the genome sequence of strain 15.1. Synthesis of crystals by a plasmid-cured derivative of strain 15.1 (produced using a novel curing strategy), demonstrated that the oxalate decarboxylase was encoded chromosomally. Crystals spontaneously solubilized when kept at low temperatures, and the protein produced was resistant to trypsin treatment. The insoluble crystals produced by B. pumilus 15.1 did not show significant toxicity when bioassayed against C. capitata larvae, but once the OxdD protein was solubilized, an increase of toxicity was observed. We also demonstrate that the OxdD present in the crystals has oxalate decarboxylate activity as the formation of formate was detected, which suggests a possible mechanism for B. pumilus 15.1 activity. To our knowledge, the characterization of the B. pumilus crystals as oxalate decarboxylase is the first report of the natural production of parasporal inclusions of an enzyme.
Collapse
Affiliation(s)
- Diana C. Garcia‐Ramon
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Present address:
Medical SchoolFaculty of Life, Health and Medical SciencesUniversidad Internacional del EcuadorQuitoEcuador
| | - Colin Berry
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Carmen Tse
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | | | - Antonio Osuna
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
| | - Susana Vílchez
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Department of Biochemistry and Molecular Biology ICampus FuentenuevaUniversity of GranadaGranadaSpain
| |
Collapse
|
5
|
Handtke S, Albrecht D, Zühlke D, Otto A, Becher D, Schweder T, Riedel K, Hecker M, Voigt B. Bacillus pumilus KatX2 confers enhanced hydrogen peroxide resistance to a Bacillus subtilis PkatA::katX2 mutant strain. Microb Cell Fact 2017; 16:72. [PMID: 28446175 PMCID: PMC5406934 DOI: 10.1186/s12934-017-0684-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/19/2017] [Indexed: 11/27/2022] Open
Abstract
Background Bacillus pumilus cells exhibit a significantly higher resistance to hydrogen peroxide compared to closely related Bacilli like Bacillus subtilis. Results In this study we analyzed features of the catalase KatX2 of B. pumilus as one of the most important parts of the cellular response to hydrogen peroxide. KatX2, the vegetative catalase expressed in B. pumilus, was compared to the vegetative catalase KatA of B. subtilis. Data of our study demonstrate that B. pumilus can degrade toxic concentrations of hydrogen peroxide faster than B. subtilis. By replacing B. subtiliskatA gene by katX2 we could significantly enhance its resistance to H2O2 and its potential to eliminate this toxic compound. Mutant cells showed a 1.5- to 2-fold higher survival to toxic concentrations of hydrogen peroxide compared to wild type cells. Furthermore, we found reversible but also irreversible oxidations of the KatX2 protein which, in contrast to KatA, contains several cysteine residues. Conclusions Our study indicates that the catalase KatX2 plays a major role in the increased resistance of B. pumilus to oxidative stress caused by hydrogen peroxide. Resistance to hydrogen peroxide of other Bacilli can be enhanced by exchanging the native catalase in the cells with katX2. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0684-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Handtke
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Daniela Zühlke
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Andreas Otto
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Kathrin Riedel
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Birgit Voigt
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany. .,Institute of Marine Biotechnology, 17489, Greifswald, Germany. .,Research Institute for Leather and Plastic Sheeting, Meißner-Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
6
|
Danilova IV, Toymentseva AA, Baranova DS, Sharipova MR. The Genetic Mechanism of Resistance to Antibiotics in Bacillus pumilus 3-19 Strain. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0295-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Genome Sequence of a Multidrug-Resistant Strain of Bacillus pumilus, CB01, Isolated from the Feces of an American Crow, Corvus brachyrhynchos. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00807-16. [PMID: 27540060 PMCID: PMC4991705 DOI: 10.1128/genomea.00807-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Avian species have the potential to serve as important reservoirs for the spread of pathogenic microorganisms. Here, we report the genome sequence of a drug-resistant strain of Bacillus pumilus, CB01, isolated from the feces of an American crow, Corvus brachyrhynchos.
Collapse
|