1
|
Wang JY, Cai YY, Li L, Zhu XM, Shen ZF, Wang ZH, Liao J, Lu JP, Liu XH, Lin FC. Dihydroorotase MoPyr4 is required for development, pathogenicity, and autophagy in rice blast fungus. Cell Commun Signal 2024; 22:362. [PMID: 39010102 PMCID: PMC11247805 DOI: 10.1186/s12964-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Cai
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Li
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-Fang Shen
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Lu K, Chen R, Yang Y, Xu H, Jiang J, Li L. Involvement of the Cell Wall-Integrity Pathway in Signal Recognition, Cell-Wall Biosynthesis, and Virulence in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:608-622. [PMID: 37140471 DOI: 10.1094/mpmi-11-22-0231-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The fungal cell wall is the first layer exposed to the external environment. The cell wall has key roles in regulating cell functions, such as cellular stability, permeability, and protection against stress. Understanding the structure of the cell wall and the mechanism of its biogenesis is important for the study of fungi. Highly conserved in fungi, including Magnaporthe oryzae, the cell wall-integrity (CWI) pathway is the primary signaling cascade regulating cell-wall structure and function. The CWI pathway has been demonstrated to correlate with pathogenicity in many phytopathogenic fungi. In the synthesis of the cell wall, the CWI pathway cooperates with multiple signaling pathways to regulate cell morphogenesis and secondary metabolism. Many questions have arisen regarding the cooperation of different signaling pathways with the CWI pathway in regulating cell-wall synthesis and pathogenicity. In this review, we summarized the latest advances in the M. oryzae CWI pathway and cell-wall structure. We discussed the CWI pathway components and their involvement in different aspects, such as virulence factors, the possibility of the pathway as a target for antifungal therapies, and crosstalk with other signaling pathways. This information will aid in better understanding the universal functions of the CWI pathway in regulating cell-wall synthesis and pathogenicity in M. oryzae. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kailun Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rangrang Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Hui Xu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Higashimura N, Hamada A, Ohara T, Sakurai S, Ito H, Banba S. The target site of the novel fungicide quinofumelin, Pyricularia oryzae class II dihydroorotate dehydrogenase. JOURNAL OF PESTICIDE SCIENCE 2022; 47:190-196. [PMID: 36514691 PMCID: PMC9716045 DOI: 10.1584/jpestics.d22-027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 06/17/2023]
Abstract
The target site of the novel fungicide quinofumelin was investigated in the rice blast fungus Pyricularia oryzae. Quinofumelin-induced mycelial growth inhibition was reversed by orotate but not by dihydroorotate. Recovery tests suggested that the target site of quinofumelin was dihydroorotate dehydrogenase (DHODH), which catalyzes the oxidation of dihydroorotate to orotate. Quinofumelin strongly inhibited P. oryzae class 2 DHODH (DHODH II) (IC50: 2.8 nM). The inhibitory activities of mycelial growth and DHODH II were strongly positively correlated, indicating that DHODH II inhibition by quinofumelin lead to antifungal activity. A P. oryzae DHODH II gene (PoPYR4) disruption mutant (ΔPopyr4), showing the same tendency as the quinofumelin-treated wild strain in recovery tests, was constructed, and disease symptoms were not observed in rice plants infected by ΔPopyr4. Thus, DHODH II, which plays an important role in pathogenicity and mycelial growth, is found to be the target site of quinofumelin.
Collapse
Affiliation(s)
| | - Akira Hamada
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| | - Toshiaki Ohara
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| | | | - Hiroyuki Ito
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| | - Shinichi Banba
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| |
Collapse
|
4
|
Cai X, Zhang X, Li X, Liu M, Liu X, Wang X, Zhang H, Zheng X, Zhang Z. The Atypical Guanylate Kinase MoGuk2 Plays Important Roles in Asexual/Sexual Development, Conidial Septation, and Pathogenicity in the Rice Blast Fungus. Front Microbiol 2017; 8:2467. [PMID: 29321770 PMCID: PMC5732230 DOI: 10.3389/fmicb.2017.02467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023] Open
Abstract
Guanylate kinases (GKs), which convert guanosine monophosphate into guanosine diphosphate (GDP), are important for growth and mannose outer chain elongation of cell wall N-linked glycoproteins in yeast. Here, we identified the ortholog of Saccharomyces cerevisiae GK Guk1, named MoGuk1 and a novel family of fungal GKs MoGuk2 in the rice blast fungus Magnaporthe oryzae. MoGuk1 contains 242 aa with an C-terminal GuKc domain that very similar to yeast Guk1. MoGuk2 contains 810 amino acids with a C-terminal GuKc domain and an additional N-terminal efThoc1 domain. Expression of either MoGuk1 or MoGuk2 in heterozygote yeast guk1 mutant could increase its GDP level. To investigate the biological role of MoGuk1 and MoGuk2 in M. oryzae, the gene replacement vectors were constructed. We obtained the ΔMoguk2 but not ΔMoguk1 mutant by screening over 1,000 transformants, indicating MoGuk1 might be essential for M. oryzae. The ΔMoguk2 mutant showed weak reductions in vegetative growth, conidial germination, appressorial formation, and appressorial turgor, and showed significant reductions in sporulation and pathogenicity. Moreover, the ΔMoguk2 mutant failed to produce perithecia and was sensitive to neomycin and a mixture of neomycin-tunicamycin. Exogenous GDP and ATP partially rescued the defects in conidial germination, appressorial formation, and infectious growth of the mutant. Further analysis revealed that intracellular GDP and GTP level was decreased, and GMP level was increased in the mutant, suggesting that MoGuk2 exhibits enzymatic activity. Structural analysis proved that the efThoc1, GuKc, and P-loop domains are essential for the full function of MoGuk2. Taken together, our data suggest that the guanylate kinase MoGuk2 is involved in the de novo GTP biosynthesis pathway and is important for infection-related morphogenesis in the rice blast fungus.
Collapse
Affiliation(s)
- Xingjia Cai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinrui Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaoli Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
5
|
Qi Z, Yu J, Shen L, Yu Z, Yu M, Du Y, Zhang R, Song T, Yin X, Zhou Y, Li H, Wei Q, Liu Y. Enhanced resistance to rice blast and sheath blight in rice (oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:51-60. [PMID: 29223342 DOI: 10.1016/j.plantsci.2017.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 05/05/2023]
Abstract
Oxalate decarboxylase (OxDC), catalyzing the degradation of oxalic acid, is widely distributed in varieties of organisms. In this study, an oxalate decarboxylase gene from Bacillus subtilis strain BS-916, Bacisubin, was transformed into rice variety Nipponbare to generate transgenic rice with increased OxDC activity. Pathogenicity test revealed that the transgenic rice showed enhanced resistance to rice blast and sheath blight. Further RNA-seq analysis between Nipponbare WT (wild type) and transgenic rice identified 1764 DEGs (Differentially expressed genes) including 723 up-regulated unigenes and 1041 down-regulated unigenes. Five GO terms including single-organism process and oxidation-reduction process were significantly enriched in the up-regulated genes. Interestingly, five genes encoding glutaredoxin and one gene encoding MADS box were up- and down-regulated in the transgenic rice, respectively. Collectively, our study advances the understanding of OxDC in resistance to rice disease and its possible mechanisms. Our results also suggest that OxDC would be an effective antifungal protein preventing fungal infection in transgenic rice.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Lerong Shen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Zhenxian Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Yuxin Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Huanhuan Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Qian Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Sun X, Li Z, Liu H, Yang J, Liang W, Peng YL, Huang J. Large-scale identification of lysine acetylated proteins in vegetative hyphae of the rice blast fungus. Sci Rep 2017; 7:15316. [PMID: 29127393 PMCID: PMC5681509 DOI: 10.1038/s41598-017-15655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 10/30/2017] [Indexed: 12/30/2022] Open
Abstract
Lysine acetylation is a major post-translational modification that plays important regulatory roles in diverse biological processes to perform various cellular functions in both eukaryotes and prokaryotes. However, roles of lysine acetylation in plant fungal pathogens were less studied. Here, we provided the first lysine acetylome of vegetative hyphae of the rice blast fungus Magnaporthe oryzae through a combination of highly sensitive immune-affinity purification and high-resolution LC-MS/MS. This lysine acetylome had 2,720 acetylation sites in 1,269 proteins. The lysine acetylated proteins were involved indiverse cellular functions, and located in 820 nodes and 7,709 edges among the protein-protein interaction network. Several amino acid residues nearby the lysine acetylation sites were conserved, including KacR, KacK, and KacH. Importantly, dozens of lysine acetylated proteins are found to be important to vegetative hyphal growth and fungal pathogenicity. Taken together, our results provided the first comprehensive view of lysine acetylome of M.oryzae and suggested protein lysine acetylation played important roles to fungal development and pathogenicity.
Collapse
Affiliation(s)
- Xiaomei Sun
- College of Animation and Communication, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhigang Li
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Hang Liu
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jinguang Huang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Liu X, Cai Y, Zhang X, Zhang H, Zheng X, Zhang Z. Carbamoyl Phosphate Synthetase Subunit MoCpa2 Affects Development and Pathogenicity by Modulating Arginine Biosynthesis in Magnaporthe oryzae. Front Microbiol 2016; 7:2023. [PMID: 28066349 PMCID: PMC5166579 DOI: 10.3389/fmicb.2016.02023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/02/2016] [Indexed: 01/09/2023] Open
Abstract
Arginine is a semi-essential amino acid that affects physiological and biochemical functions. The CPA2 gene in yeast encodes a large subunit of arginine-specific carbamoyl phosphate synthetase (CPS) and is involved in arginine biosynthesis. Here, an ortholog of yeast CPA2 was identified in the rice blast fungus Magnaporthe oryzae, and was named MoCPA2. MoCpa2 is an 1180-amino acid protein which contains an ATP grasp domain and two CPSase domains. Targeted deletion of MoCPA2 supported its role in de novo arginine biosynthesis in M. oryzae as mutant phenotypes were complemented by arginine but not ornithine. The ΔMocpa2 mutant exhibited defects in asexual development and pathogenicity but not appressorium formation. Further examination revealed that the invasive hyphae of the ΔMocpa2 mutant were restricted mainly to the primary infected cells. In addition, the ΔMocpa2 mutant was unable to induce a plant defense response and had the ability to scavenge ROS during pathogen-plant interactions. Structure analysis revealed that the ATP grasp domain and each CPS domain were indispensable for the proper localization and full function of MoCpa2. In summary, our results indicate that MoCpa2 plays an important role in arginine biosynthesis, and affects growth, conidiogenesis, and pathogenicity. These results suggest that research into metabolism and processes that mediate amino acid synthesis are valuable for understanding M. oryzae pathogenesis.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Yongchao Cai
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Haifeng Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Xiaobo Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Zhengguang Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| |
Collapse
|