1
|
Yu J, Xie S, Yang D. The changes induced by hydrodynamic cavitation treatment in wheat gliadin and celiac-toxic peptides. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1976-1985. [PMID: 39285999 PMCID: PMC11401822 DOI: 10.1007/s13197-024-05973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Hydrodynamic cavitation (HC) is thought weaken the allergenicity of beer gluten proteins. However, the mechanism of action has not been thoroughly studied. In this study, an HC device was used to treat wheat gliadin and two specific celiac-toxic peptides, P1 and P2. FT-IR, MFS, HPLC, and CD were used to monitor the structural characteristics of gliadin and the two peptides. HC reduced the abundance of the coeliac toxic peptides P1 and P2 in solution and the contents of secondary structure β-turns and PPII, which are related to reduced allergen immunoreactivity. This meant that both the primary and secondary structures of P1 and P2 were affected by HC, leading to fewer allergic reactions. This study was focused on the impact of HC on the secondary structures of allergens produced from gluten raw materials, and it has positive implications for reducing product allergenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05973-7.
Collapse
Affiliation(s)
- Junyu Yu
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| | - Shida Xie
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| | - Dongsheng Yang
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| |
Collapse
|
2
|
Joshi T, Vijayakumar S, Ghosh S, Mathpal S, Ramaiah S, Anbarasu A. Identifying Novel Therapeutics for the Resistant Mutant "F533L" in PBP3 of Pseudomonas aeruginosa Using ML Techniques. ACS OMEGA 2024; 9:28046-28060. [PMID: 38973840 PMCID: PMC11223260 DOI: 10.1021/acsomega.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a highly infectious and antibiotic-resistant bacterium, which causes acute and chronic nosocomial infections. P. aeruginosa exhibits multidrug resistance due to the emergence of resistant mutants. The bacterium takes advantage of intrinsic and acquired resistance mechanisms to resist almost every antibiotic. To overcome the drug-resistance problem, there is a need to develop effective drugs against antibiotic-resistant mutants. Therefore, in this study, we selected the F533L mutation in PBP3 (penicillin-binding protein 3) because of its important role in β-lactam recognition. To target this mutation, we screened 147 antibacterial compounds from PubChem through a machine-learning model developed based on the decision stump algorithm with 75.75% accuracy and filtered out 55 compounds. Subsequently, out of 55 compounds, 47 compounds were filtered based on their drug-like activity. These 47 compounds were subjected to virtual screening to obtain binding affinity compounds. The binding affinity range of all 47 compounds was -11.3 to -4.6 kcal mol-1. The top 10 compounds were examined according to their binding with the mutation point. A molecular dynamic simulation of the top 8 compounds was conducted to understand the stability of the compounds containing the mutated PBP3. Out of 8 compounds, 3 compounds, namely, macozinone, antibacterial agent 71, and antibacterial agent 123, showed good stability and were validated by RMSD, RMSF, and binding-free analysis. The findings of this study revealed promising antibacterial compounds against the F533L mutant PBP3. Furthermore, developments in these compounds may pave the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Tushar Joshi
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Santhiya Vijayakumar
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Integrative Biology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Soumyadip Ghosh
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Shalini Mathpal
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
3
|
Min JH, Lee YJ, Kang HJ, Moon NR, Park YK, Joo ST, Jung YH. Characterization of Yeast Protein Hydrolysate for Potential Application as a Feed Additive. Food Sci Anim Resour 2024; 44:723-737. [PMID: 38765283 PMCID: PMC11097015 DOI: 10.5851/kosfa.2024.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Yeast protein can be a nutritionally suitable auxiliary protein source in livestock food. The breakdown of proteins and thereby generating high-quality peptide, typically provides nutritional benefits. Enzyme hydrolysis has been effectively uesed to generate peptides; however, studies on the potential applications of different types of enzymes to produce yeast protein hydrolysates remain limited. This study investigated the effects of endo- (alcalase and neutrase) and exotype (flavourzyme and prozyme 2000P) enzyme treatments on yeast protein. Endotype enzymes facilitate a higher hydrolysis efficiency in yeast proteins than exotype enzymes. The highest degree of hydrolysis was observed for the protein treated with neutrase, which was followed by alcalase, prozyme 2000P, and flavourzyme. Furthermore, endotype enzyme treated proteins exhibited higher solubility than their exotype counterparts. Notably, the more uniform particle size distribution was observed in endotype treated yeast protein. Moreover, compared with the original yeast protein, the enzymatic protein hydrolysates possessed a higher content of β-sheets structures, indicating their higher structural stability. Regardless of enzyme type, enzyme treated protein possessed a higher total free amino acid content including essential amino acids. Therefore, this study provides significant insights into the production of protein hydrolysates as an alternative protein material.
Collapse
Affiliation(s)
- Ju Hyun Min
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Yeon Ju Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Na Rae Moon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | | | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
4
|
Wang Z, Chen L, Yang F, Wang X, Hu Y, Wang T, Lu X, Lu J, Hu C, Tu H, Xu G. High-sensitivity profiling of dipeptides in sauce-flavor Baijiu Daqu by chemical derivatization and ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry. Food Chem X 2024; 21:101097. [PMID: 38229674 PMCID: PMC10790028 DOI: 10.1016/j.fochx.2023.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Dipeptides in sauce-flavor Baijiu Daqu are protein degradation products during the fermentation of Daqu, which are believed to play a crucial role in the flavor and quality of Baijiu. Herein, we integrated dansyl chloride derivatization with ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) for comprehensively profiling dipeptides in Daqu. The derivatization efficiency was higher than 99.1 % for all 17 dipeptide standards under the optimized derivatization conditions. In total, 118 dipeptides were detected in Daqu. The method was validated and the analytical characteristics including the linearity (spanned across 2-4 orders of magnitude), precision (1.2-19.9 %), limit of detection (varied from 1.1 to 53.4 pmol/mL) and the stability (3.6-15.8 %) are satisfactory. The usefulness of the method was examined by studying the distribution characteristics of dipeptides in Daqu under different production conditions. The present method provides an effective and robust strategy for comprehensively analyzing dipeptide compounds in complex biological samples.
Collapse
Affiliation(s)
- Zixuan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Liangqiang Chen
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China
- Kweichow Moutai Group, Renhuai, Guizhou 564507, China
| | - Fan Yang
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China
- Kweichow Moutai Group, Renhuai, Guizhou 564507, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yang Hu
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China
- Kweichow Moutai Group, Renhuai, Guizhou 564507, China
| | - Ting Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Jianjun Lu
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China
- Kweichow Moutai Group, Renhuai, Guizhou 564507, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Huabin Tu
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China
- Kweichow Moutai Group, Renhuai, Guizhou 564507, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
5
|
Alakbaree M, Abdulsalam AH, Ahmed HH, Ali FH, Al-Hili A, Omar MSS, Alonazi M, Jamalis J, Latif NA, Hamza MA, Amran SI. A computational study of structural analysis of Class I human glucose-6-phosphate dehydrogenase (G6PD) variants: Elaborating the correlation to chronic non-spherocytic hemolytic anemia (CNSHA). Comput Biol Chem 2023; 104:107873. [PMID: 37141793 DOI: 10.1016/j.compbiolchem.2023.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect that affects more than 500 million people worldwide. Individuals affected with G6PD deficiency may occasionally suffer mild-to-severe chronic hemolytic anemia. Chronic non-spherocytic hemolytic anemia (CNSHA) is a potential result of the Class I G6PD variants. This comparative computational study attempted to correct the defect in variants structure by docking the AG1 molecule to selected Class I G6PD variants [G6PDNashville (Arg393His), G6PDAlhambra (Val394Leu), and G6PDDurham (Lys238Arg)] at the dimer interface and structural NADP+ binding site. It was followed by an analysis of the enzyme conformations before and after binding to the AG1 molecule using the molecular dynamics simulation (MDS) approach, while the severity of CNSHA was determined via root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen bonds, salt bridges, radius of gyration (Rg), solvent accessible surface area analysis (SASA), and principal component analysis (PCA). The results revealed that G6PDNashville (Arg393His) and G6PDDurham (Lys238Arg) had lost the direct contact with structural NADP+ and salt bridges at Glu419 - Arg427 and Glu206 - Lys407 were disrupted in all selected variants. Furthermore, the AG1 molecule re-stabilized the enzyme structure by restoring the missing interactions. Bioinformatics approaches were also used to conduct a detailed structural analysis of the G6PD enzyme at a molecular level to understand the implications of these variants toward enzyme function. Our findings suggest that despite the lack of treatment for G6PDD to date, AG1 remains a novel molecule that promotes activation in a variety of G6PD variants.
Collapse
Affiliation(s)
- Maysaa Alakbaree
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.
| | | | - Haron H Ahmed
- Ibn Sina University for Medical and Pharmaceutical Sciences, Faculty of Medicine, Baghdad, Iraq
| | - Farah Hasan Ali
- Department of Radiology and Ultrasound, Al-Farahidi University, Collage of Medical Technology, Baghdad, Iraq
| | - Ahmed Al-Hili
- Department of Anesthesia, Al-Farahidi University, Collage of Medical Technology, Baghdad, Iraq
| | | | - Mona Alonazi
- Department of Biochemistry, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Nurriza Ab Latif
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Muaawia Ahmed Hamza
- Faculty of Medicine, King Fahad Medical City, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Syazwani Itri Amran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
6
|
Indarti E, Muliani S, Yunita D. Characteristics of Biofoam Cups Made from Sugarcane Bagasse with Rhizopus oligosporus as Binding Agent. ADVANCES IN POLYMER TECHNOLOGY 2023. [DOI: 10.1155/2023/8257317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
This study is aimed at producing a biofoam cup made from sugarcane bagasse with tempeh mold (Rhizopus oligosporus). Soybean flour (SF) was added to promote the growth of mycelia, which could bind the bagasse fiber matrix. The main materials were whole bagasse (B) and depithed bagasse (DB). The SF weight ratios to bagasse were 1 : 1 (SF1) and 1.5 : 1 (SF1.5). Therefore, the studied specimens were labeled B-SF1, DB-SF1, B-SF1.5, and DB-SF1.5. All biofoam cups were analyzed for their physical properties (water absorption and porosity), mechanical properties (puncture and compressive strengths), biodegradability, and thermal properties (thermogravimetric analysis). The lowest water absorption rates were obtained from the B biofoam cups (
) and the SF1.5 biofoam cups (
). Both B-SF1 and B-SF1.5 had lower porosity (
and
, respectively) than the DB biofoam cups. Moreover, the B biofoam cups had smoother biofoam surfaces, smaller voids, and lower porosity compared with the DB samples. However, the DB biofoam cups showed the highest puncture strength (
kg cm−2) among all samples. Nevertheless, the B-SF1.5 biofoam cup had the highest compressive strength (
MPa) and the DB-SF1.5 exhibited the slowest degradation rate (
) after 14 days of soil burial. The highest thermal stability was obtained from B-SF1.5, which had a thermal degradation temperature of 264°C. Overall, B-SF1.5 had the smoothest surface, good thermal stability, and high compressive strength.
Collapse
Affiliation(s)
- Eti Indarti
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Master Program of Agriculture Industrial Technology, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sri Muliani
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Dewi Yunita
- Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
7
|
Terriente-Palacios C, Rubiño S, Hortós M, Peteiro C, Castellari M. Taurine, homotaurine, GABA and hydrophobic amino acids content influences "in vitro" antioxidant and SIRT1 modulation activities of enzymatic protein hydrolysates from algae. Sci Rep 2022; 12:20832. [PMID: 36460715 PMCID: PMC9718854 DOI: 10.1038/s41598-022-25130-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Prevention and control of diseases and delaying the signs of ageing are nowadays one of the major goals of biomedicine. Sirtuins, a family of NAD+ dependent deacylase enzymes, could be pivotal targets of novel preventive and therapeutic strategies to achieve such aims. SIRT1 activating and inhibiting compounds, such as polyphenols and bioactive peptides, have been proposed to be involved in the development of many human diseases. The objective of this work was to assess and compare the antioxidant and SIRT1 modulation activities of enzymatic protein hydrolysates (EPHs) from a wide number of algae species (24 commercial samples and 12 samples harvested off the Atlantic coast of northern Spain). High antioxidant activities were observed in EPHs from red and green seaweed species. Moreover, 19 samples exhibited SIRT1 activation, while EPHs from the 16 samples were SIRT1 inhibitors. Pearson's correlation test and Principal Component Analysis revealed significant correlations between (1) total peptide and hydrophobic amino acid content in EPHs and their antioxidant activities, and (2) concentrations of taurine, homotaurine, and amino acid gamma aminobutyric acid in EPHs and their SIRT1 modulation activity.
Collapse
Affiliation(s)
- Carlos Terriente-Palacios
- IRTA, Food Safety and Functionality Programe, Finca Camps I Armet s/n, Monells, 17121 Girona, Spain ,grid.10702.340000 0001 2308 8920Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (EIDUNED), Calle Bravo Murillo 38, 28015 Madrid, Spain
| | - Susana Rubiño
- IRTA, Food Safety and Functionality Programe, Finca Camps I Armet s/n, Monells, 17121 Girona, Spain
| | - Maria Hortós
- IRTA, Food Safety and Functionality Programe, Finca Camps I Armet s/n, Monells, 17121 Girona, Spain
| | - César Peteiro
- Spanish Institute of Oceanography of the Spanish National Research Council (IEO, CSIC), Oceanographic Center of Santander, Marine Culture Units “El Bocal”, Seaweeds Center, Barrio Corbanera s/n., Monte, 39012 Santander, Spain
| | - Massimo Castellari
- IRTA, Food Safety and Functionality Programe, Finca Camps I Armet s/n, Monells, 17121 Girona, Spain
| |
Collapse
|
8
|
Gao S, Shan L, Shi Y, Zhao Y, Mu Q, Cui Y, Chai X, Wang Y. Exploration of the variations of amino acids in Massa Medicata Fermentata and their effects on gastrointestinal diseases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Differential effects of oilseed protein hydrolysates in attenuating inflammation in murine macrophages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Fluorinated Protein and Peptide Materials for Biomedical Applications. Pharmaceuticals (Basel) 2022; 15:ph15101201. [PMID: 36297312 PMCID: PMC9609677 DOI: 10.3390/ph15101201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Fluorination represents one of the most powerful modern design strategies to impart biomacromolecules with unique functionality, empowering them for widespread application in the biomedical realm. However, the properties of fluorinated protein materials remain unpredictable due to the heavy context-dependency of the surrounding atoms influenced by fluorine’s strong electron-withdrawing tendencies. This review aims to discern patterns and elucidate design principles governing the biochemical synthesis and rational installation of fluorine into protein and peptide sequences for diverse biomedical applications. Several case studies are presented to deconvolute the overgeneralized fluorous stabilization effect and critically examine the duplicitous nature of the resultant enhanced chemical and thermostability as it applies to use as biomimetic therapeutics, drug delivery vehicles, and bioimaging modalities.
Collapse
|
11
|
Trigueros E, Sanz M, Filipigh A, Beltrán S, Riaño P. Enzymatic hydrolysis of the industrial solid residue of red seaweed after agar extraction: Extracts characterization and modelling. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Subcritical water as hydrolytic medium to recover and fractionate the protein fraction and phenolic compounds from craft brewer's spent grain. Food Chem 2021; 351:129264. [PMID: 33662908 DOI: 10.1016/j.foodchem.2021.129264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/28/2020] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
Abstract
The valorization of the brewer's spent grain (BSG) generated in a craft beer industry was studied by subcritical water hydrolysis in a semi-continuous fixed-bed reactor. Temperature was varied from 125 to 185 °C at a constant flow rate of 4 mL/min. Biomass hydrolysis yielded a maximum of 78% of solubilized protein at 185 °C. Free amino acids presented a maximum level at 160 °C with a value of 55 mg free amino acids/gprotein-BSG. Polar amino acid presented a maximum at lower temperatures than non-polar amino acids. The maximum in total phenolic compounds was reached at 185 °C. This maximum is the same for aldehyde phenolic compounds such as vanillin, syringic and protocatechuic aldehyde; however, for hydroxycinnamic acids, such as ferulic acid and p-coumaric, the maximum was obtained at 160 °C. This allows a fractionation of the bioactive compounds. Subcritical water addresses opportunities for small breweries to be incorporated within the biorefinery concept.
Collapse
|
13
|
Zheng L, Wang Z, Kong Y, Ma Z, Wu C, Regenstein JM, Teng F, Li Y. Different commercial soy protein isolates and the characteristics of Chiba tofu. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
14
|
Liu X, Huang L, Bai Y, Liu X, Li S. Extracting bio‐zinc and taurine from
Pinctada martensii
meat. J Food Sci 2020; 85:1125-1131. [DOI: 10.1111/1750-3841.15055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoyue Liu
- College of Light Industry and Food EngineeringGuangxi Univ. Nanning 530004 China
| | - Li Huang
- College of Light Industry and Food EngineeringGuangxi Univ. Nanning 530004 China
| | - Yunxia Bai
- College of Light Industry and Food EngineeringGuangxi Univ. Nanning 530004 China
| | - Xiaoling Liu
- College of Light Industry and Food EngineeringGuangxi Univ. Nanning 530004 China
| | - Shubo Li
- College of Light Industry and Food EngineeringGuangxi Univ. Nanning 530004 China
| |
Collapse
|
15
|
Asrarkulova AS, Bulushova NV. Wheat Gluten and Its Hydrolysates. Possible Fields of Practical Use. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Wang LJ, Chang YC, Osmanson AT, Zhang J, Li L. Facile continuous production of soy peptide nanogels via nanoscale flash desolvation for drug entrapment. Int J Pharm 2018; 549:13-20. [PMID: 30031865 DOI: 10.1016/j.ijpharm.2018.07.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
A facile continuous production of soy peptide nanogels was demonstrated using a multi-inlet vortex micromixer for the entrapment of active ingredients. The full flow regime in the micromixer was systematically studied to understand the flow impact on nanogel size, drug encapsulation efficiency and drug loading efficiency. Ibuprofen was chosen as a model drug to demonstrate encapsulation capability. The study showed that the nanogel size, drug encapsulation efficiency and drug loading efficiency did not alter significantly as long as the flow rates were in transition and turbulent regimes. The driving force behind the folding of peptides within the microenvironment is kinetic mixing with high flow rates, which dominates in comparison to molecular diffusion, nucleation, and growth. Moreover, the hydrophilic-lipophilic balance of the soy peptides determined the drug encapsulation efficiency and the drug loading efficiency, which did not vary much under different manufacturing parameters. Both characteristics are beneficial to mass production of drug-entrapped peptide. In a 50% water-ethanol mixture, the encapsulation efficiency achieved 70% and the drug loading efficiency was up to 25% in transition and turbulent flow regimes. This work opens the avenues to continuous production of drug-entrapped soy peptide nanogels using a multi-inlet vortex micromixer.
Collapse
Affiliation(s)
- Li-Ju Wang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Yu-Chung Chang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Allison T Osmanson
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Jinwen Zhang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA
| | - Lei Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
17
|
Pellis A, Cantone S, Ebert C, Gardossi L. Evolving biocatalysis to meet bioeconomy challenges and opportunities. N Biotechnol 2018; 40:154-169. [DOI: 10.1016/j.nbt.2017.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
18
|
Gluten reduction in beer by hydrodynamic cavitation assisted brewing of barley malts. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|