1
|
Ren P, Sun A, Jiao X, Chen QL, Hu HW. The relationship between protist consumers and soil functional genes under long-term fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178658. [PMID: 39904217 DOI: 10.1016/j.scitotenv.2025.178658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Protists play a crucial role in terrestrial ecosystems by participating in biogeochemical cycles and contributing to ecological balance and stability. However, much remains to be understood about the intricate interactions between soil protists and biogeochemical processes. Here, we collected rhizosphere soil samples from seven distinct fertilization treatments to investigate the responses of bacteria, protists and functional genes to these varying fertilization practices during sorghum's maturity season. The community composition of both protists and bacteria were significantly affected by different fertilization treatments, with organic fertilization increasing protist diversity but not affecting bacterial diversity. There were noticeable variations in the compositions of functional genes across different fertilization treatments, with organic fertilization enhancing the relative abundance of carbon and phosphorus cycling genes. While fertilization generally increased the relative abundance of protistan consumers, it was observed that organic fertilizers decreased the relative abundance of phototrophs. A substantial number of bacterial taxa, including Acidibacter, Steroidobacter, Lysobacter and Agromyces, which correlated positively with functional genes, were found to be prey for protistan consumers, indicating their crucial role in predicting soil functional genes. Altogether, this study highlights the significant impact of fertilization treatments, especially organic fertilization, on the diversity and functional dynamics of protist and bacterial communities, emphasizing the key role of protistan consumers in regulating the soil microbial community and modulating soil biogeochemical cycles.
Collapse
Affiliation(s)
- Peixin Ren
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Anqi Sun
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Xiaoyan Jiao
- College of Resource and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Qing-Lin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Zhang Y, Cheng X, van Groenigen KJ, García-Palacios P, Cao J, Zheng X, Luo Y, Hungate BA, Terrer C, Butterbach-Bahl K, Olesen JE, Chen J. Shifts in soil ammonia-oxidizing community maintain the nitrogen stimulation of nitrification across climatic conditions. GLOBAL CHANGE BIOLOGY 2024; 30:e16989. [PMID: 37888833 DOI: 10.1111/gcb.16989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Anthropogenic nitrogen (N) loading alters soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundances, likely leading to substantial changes in soil nitrification. However, the factors and mechanisms determining the responses of soil AOA:AOB and nitrification to N loading are still unclear, making it difficult to predict future changes in soil nitrification. Herein, we synthesize 68 field studies around the world to evaluate the impacts of N loading on soil ammonia oxidizers and nitrification. Across a wide range of biotic and abiotic factors, climate is the most important driver of the responses of AOA:AOB to N loading. Climate does not directly affect the N-stimulation of nitrification, but does so via climate-related shifts in AOA:AOB. Specifically, climate modulates the responses of AOA:AOB to N loading by affecting soil pH, N-availability and moisture. AOB play a dominant role in affecting nitrification in dry climates, while the impacts from AOA can exceed AOB in humid climates. Together, these results suggest that climate-related shifts in soil ammonia-oxidizing community maintain the N-stimulation of nitrification, highlighting the importance of microbial community composition in mediating the responses of the soil N cycle to N loading.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Kees Jan van Groenigen
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Xunhua Zheng
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, New York, Ithaca, USA
| | - Bruce A Hungate
- Department of Biological Sciences, Northern Arizona University, Arizona, Flagstaff, USA
| | - Cesar Terrer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA
| | - Klaus Butterbach-Bahl
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Center for Landscape Research in Sustainable Agricultural Futures, Land-CRAFT, Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Jørgen Eivind Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| |
Collapse
|
3
|
Tao R, Li J, Hu B, Chu G. Mitigating N 2O emission by synthetic inhibitors mixed with urea and cattle manure application via inhibiting ammonia-oxidizing bacteria, but not archaea, in a calcareous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116478. [PMID: 33453701 DOI: 10.1016/j.envpol.2021.116478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Synthetic inhibitors and organic amendment have been proposed for mitigating greenhouse gas N2O emissions. However, their combined effect on the N2O emissions and ammonia-oxidizer (ammonia-oxidizing bacteria and archaea, AOB and AOA) communities remains unclear in calcareous soils under climate warming. We conducted two incubation experiments (25 and 35 °C) to examine how N2O emissions and AOA and AOB communities responded to organic amendment (urea plus cattle manure, UCM), and in combination with urease (N-(n-butyl) thiophosphoric triamide, NBPT) and nitrification inhibitor (nitrapyrin). The treatments of UCM + nitrapyrin and UCM + nitrapyrin + NBPT significantly lowered total N2O emissions by average 64.5 and 71.05% at 25 and 35 °C, respectively, compared with UCM treatment. AOB gene abundance and α-diversity (Chao1 and Shannon indices) were significantly increased by the application of urea and manure (P < 0.05). However, relative to UCM treatment, nitrapyrin addition treatments decreased AOB gene abundance and Chao 1 index by average 115.4 and 30.4% at 25 and 35 °C, respectively. PCA analysis showed that UCM or UCM plus nitrapyrin notably shifted AOB structure at both temperatures. However, fertilization had little effects on AOA community (P > 0.05). Potential nitrification rate (PNR) was greatly decreased by nitrapyrin addition, and PNR significantly positively correlated with AOB gene abundance (P = 0.0179 at 25 °C and P = 0.0029 at 35 °C) rather than AOA (P > 0.05). Structural equation model analysis showed that temperature directly increased AOA abundance but decrease AOB abundance, while fertilization indirectly influenced AOB community by altering soil NH4+, pH and SOC. In conclusion, the combined application of organic amendment, NBPT and nitrapyrin significantly lowered N2O emissions via reducing AOB community in calcareous soil even at high temperature. Our findings provide a solid theoretical basis in mitigating N2O emissions from calcareous soil under climate warming.
Collapse
Affiliation(s)
- Rui Tao
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Jun Li
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Guixin Chu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China.
| |
Collapse
|
4
|
Chen C, Han H, Xu T, Lv Y, Hu K, Li XX, Qiao Y, Ding GC, Li J. Comparison of the Total, Diazotrophic and Ammonia-Oxidizing Bacterial Communities Between Under Organic and Conventional Greenhouse Farming. Front Microbiol 2020; 11:1861. [PMID: 32903338 PMCID: PMC7434936 DOI: 10.3389/fmicb.2020.01861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Organic greenhouse farming is an innovative system that may maintain a high yield and healthy agroecosystem. There have been no rigorous studies on the comparison of total and nitrogen-cycling bacterial community in vegetable soils between organic and conventional farming management at large scale. A survey of bacterial community and nitrogen cycles from soils under organic and conventional greenhouse farming was performed at 30 sites, covering seven soil types with 4 to 18 years of organic farming history. Communities of the total, diazotrophs and ammonia-oxidizing bacteria were studied with high-throughput sequencing of the 16S rRNA, nifH and amoA genes, respectively. Organic greenhouse farming did not influence alpha diversities. Beta diversities among the total (26/30) and diazotrophic (17/19) bacteria differed between farming systems, but compositional differences in ammonia-oxidizing bacteria between the two farming systems were only detected at 6 sites. Despite the effects of farming system on most bacterial genera were varied across different sites, organic greenhouse farming persistently selected for a few genera, possibly for the biodegradation of organic carbon with high molecular weight (Hyphomicrobium, Rubinisphaera, Aciditerrimonas, Planifilum, Phaselicystis, and Ohtaekwangia), but against putative ammonia oxidizing (Nitrosospira, Nitrosopumilus) and diazotrophic (Bradyrhizobium) bacterial genera, as determined by 16S rRNA analysis. Diazotrophic bacteria affiliated with nifH cluster 1J were preferentially associated with organic greenhouse farming, in contrast to Paenibacillus borealis. In summary, this study provides insights into the complex effects of organic greenhouse farming on the total, diazotrophic and ammonia oxidizing bacterial communities across different environmental context.
Collapse
Affiliation(s)
- Chen Chen
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hui Han
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou ViCheck Biotechnology Co., Ltd., Suzhou, China
| | - Yizhong Lv
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Kelin Hu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xue Xian Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yuhui Qiao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guo-Chun Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou ViCheck Biotechnology Co., Ltd., Suzhou, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou ViCheck Biotechnology Co., Ltd., Suzhou, China
| |
Collapse
|
5
|
Niu Y, Zhang M, Bai SH, Xu Z, Liu Y, Chen F, Guo X, Luo H, Wang S, Xie J, Yuan X. Successive mineral nitrogen or phosphorus fertilization alone significantly altered bacterial community rather than bacterial biomass in plantation soil. Appl Microbiol Biotechnol 2020; 104:7213-7224. [PMID: 32632477 DOI: 10.1007/s00253-020-10761-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Bacteria play determining roles in forest soil environment and contribute to essential functions in the cycling of nitrogen (N) and phosphorus (P). Understanding the effects of different fertilizer applications, especially successive fertilization, on soil properties and bacterial community could reveal the impacts of fertilization on forest soil ecology and shed light on the nutrient cycling in forest system. This study aimed to evaluate the impacts of successive mineral N (NH4NO3) and P (NaH2PO4) fertilization at different rates, alone or together, on soil bacterial biomass and communities at 0-5, 5-10, and 10-20 cm. Compared with the control, N fertilization decreased soil pH, but P alone or with N fertilization had negligibly negative impacts on soil pH. Different mineral fertilizer applications, alone or together, showed no significant effects on soil organic matter contents, relative to the control treatment. Bacterial biomass remained stable to different fertilizations but decreased with sampling depths. Sole N or P fertilization, rather than combined fertilizations, significantly changed soil bacterial community structures. Our results demonstrated that mineral N or P fertilization alone significantly affected bacterial community structures rather than biomass in the plantation soils. KEY POINTS: • Impacts of successive mineral fertilization on soil bacteria were determined. • Mineral fertilization showed negligible impacts on bacterial biomass. • N additions stimulated Chloroflexi relative abundances. • Mineral N or P fertilization significantly altered bacterial community structure.
Collapse
Affiliation(s)
- Yun Niu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.,Key Laboratory Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Manyun Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China. .,Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Queensland, 4111, Australia.
| | - Shahla Hosseini Bai
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Queensland, 4111, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Queensland, 4670, Australia
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Yuanqiu Liu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Fusheng Chen
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaomin Guo
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Handong Luo
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuli Wang
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junyi Xie
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xi Yuan
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
6
|
Ding GC, Bai M, Han H, Li H, Ding X, Yang H, Xu T, Li J. Microbial taxonomic, nitrogen cycling and phosphorus recycling community composition during long-term organic greenhouse farming. FEMS Microbiol Ecol 2020; 95:5423879. [PMID: 30927421 DOI: 10.1093/femsec/fiz042] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 11/14/2022] Open
Abstract
Understanding the interplay between the farming system and soil microbiomes could aid the design of a sustainable and efficient farming system. A comparative greenhouse experiment consisting of organic (ORG), integrated (INT) and conventional (CON) farming systems was established in northern China in 2002. The effects of 12 years of organic farming on soil microbiomes were explored by metagenomic and 16S rRNA gene amplicon sequencing analyses. Long-term ORG shifted the community composition of dominant phyla, especially Acidobacteria, increased the relative abundance of Ignavibacteria and Acidobacteria Gp6 and decreased the relative abundance of Nitrosomonas, Bacillus and Paenibacillus. Metagenomic analysis further revealed that relative abundance of ammonia oxidizing microorganisms (Bacteria and Archaea) and anaerobic ammonium oxidation bacteria decreased during ORG. Conversely, the relative abundance of bacteria-carrying periplasmic nitrate reductases (napA) was slightly higher for ORG. Long-term organic farming also caused significant alterations to the community composition of functional groups associated with ammonia oxidation, denitrification and phosphorus recycling. In summary, this study provides key insights into the composition of soil microbiomes and long-term organic farming under greenhouse conditions.
Collapse
Affiliation(s)
- Guo-Chun Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, Department of Ecology and Ecological Engineering, College of Resources and Environmental Science, China Agricultural University,100193, Beijing, China.,Organic Recycling Institute(Suzhou) of China Agricultural University,215128, Wuzhong, Jiangsu Province, China
| | - Mohan Bai
- Beijing Key Laboratory of Biodiversity and Organic Farming, Department of Ecology and Ecological Engineering, College of Resources and Environmental Science, China Agricultural University,100193, Beijing, China
| | - Hui Han
- Beijing Key Laboratory of Biodiversity and Organic Farming, Department of Ecology and Ecological Engineering, College of Resources and Environmental Science, China Agricultural University,100193, Beijing, China
| | - Huixiu Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, Department of Ecology and Ecological Engineering, College of Resources and Environmental Science, China Agricultural University,100193, Beijing, China
| | - Xiaoyan Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, Department of Ecology and Ecological Engineering, College of Resources and Environmental Science, China Agricultural University,100193, Beijing, China
| | - Hefa Yang
- Quzhou Experimental Station of China Agricultural University, 057250, Quzhou County, Hebei Province, China
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, Department of Ecology and Ecological Engineering, College of Resources and Environmental Science, China Agricultural University,100193, Beijing, China.,Organic Recycling Institute(Suzhou) of China Agricultural University,215128, Wuzhong, Jiangsu Province, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, Department of Ecology and Ecological Engineering, College of Resources and Environmental Science, China Agricultural University,100193, Beijing, China.,Organic Recycling Institute(Suzhou) of China Agricultural University,215128, Wuzhong, Jiangsu Province, China
| |
Collapse
|
7
|
Ding J, Ma M, Jiang X, Liu Y, Zhang J, Suo L, Wang L, Wei D, Li J. Effects of applying inorganic fertilizer and organic manure for 35 years on the structure and diversity of ammonia-oxidizing archaea communities in a Chinese Mollisols field. Microbiologyopen 2020; 9:e00942. [PMID: 31568679 PMCID: PMC6957403 DOI: 10.1002/mbo3.942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we investigated the physicochemical properties of soil, and the diversity and structure of the soil ammonia-oxidizing archaea (AOA) community, when subjected to fertilizer treatments for over 35 years. We collected soil samples from a black soil fertilization trial in northeast China. Four treatments were tested: no fertilization (CK); manure (M); nitrogen (N), phosphorus (P), and potassium (K) chemical fertilizer (NPK); and N, P, and K plus M (MNPK). We employed 454 high-throughput pyrosequencing to measure the response of the soil AOA community to the long-term fertilization. The fertilization treatments had different impacts on the shifts in the soil properties and AOA community. The utilization of manure alleviated soil acidification and enhanced the soybean yield. The soil AOA abundance was increased greatly by inorganic and organic fertilizers. In addition, the community Chao1 and ACE were highest in the MNPK treatment. In terms of the AOA community composition, Thaumarchaeota and Crenarchaeota were the main AOA phyla in all samples. Compared with CK and M, the abundances of Thaumarchaeota were remarkably lower in the MNPK and NPK treatments. There were distinct shifts in the compositions of the AOA operational taxonomic units (OTUs) under different fertilization management practices. OTU51 was the dominant OTU in all treatments, except for NPK. OTU79 and OTU11 were relatively abundant OTUs in NPK. Only Nitrososphaera AOA were tracked from the black soil. Redundancy analysis indicated that the soil pH and soil available P were the two main factors that affected the AOA community structure. The abundances of AOA were positively correlated with the total N and available P concentrations, and negatively correlated with the soil pH.
Collapse
Affiliation(s)
- Jianli Ding
- Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Jiang
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Yao Liu
- National Center for Science and Technology EvaluationMOSTBeijingChina
| | - Junzheng Zhang
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
| | - Linna Suo
- Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Lei Wang
- Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Dan Wei
- Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jun Li
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
8
|
Liu X, Cheng J, Zhang G, Ding W, Duan L, Yang J, Kui L, Cheng X, Ruan J, Fan W, Chen J, Long G, Zhao Y, Cai J, Wang W, Ma Y, Dong Y, Yang S, Jiang H. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat Commun 2018; 9:448. [PMID: 29386648 PMCID: PMC5792594 DOI: 10.1038/s41467-018-02883-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/05/2018] [Indexed: 01/02/2023] Open
Abstract
The flavonoid extract from Erigeron breviscapus, breviscapine, has increasingly been used to treat cardio- and cerebrovascular diseases in China for more than 30 years, and plant supply of E. breviscapus is becoming insufficient to satisfy the growing market demand. Here we report an alternative strategy for the supply of breviscapine by building a yeast cell factory using synthetic biology. We identify two key enzymes in the biosynthetic pathway (flavonoid-7-O-glucuronosyltransferase and flavone-6-hydroxylase) from E. breviscapus genome and engineer yeast to produce breviscapine from glucose. After metabolic engineering and optimization of fed-batch fermentation, scutellarin and apigenin-7-O-glucuronide, two major active ingredients of breviscapine, reach to 108 and 185 mg l-1, respectively. Our study not only introduces an alternative source of these valuable compounds, but also provides an example of integrating genomics and synthetic biology knowledge for metabolic engineering of natural compounds.
Collapse
Affiliation(s)
- Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lijin Duan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jing Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.,National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Ling Kui
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xiaozhi Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiangxing Ruan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Junwen Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Guangqiang Long
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yan Zhao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jing Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yang Dong
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.,National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China. .,National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
9
|
Xi R, Long XE, Huang S, Yao H. pH rather than nitrification and urease inhibitors determines the community of ammonia oxidizers in a vegetable soil. AMB Express 2017. [PMID: 28641404 PMCID: PMC5479772 DOI: 10.1186/s13568-017-0426-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nitrification inhibitors and urease inhibitors, such as nitrapyrin and N-(n-butyl) thiophosphoric triamide (NBPT), can improve the efficiencies of nitrogen fertilizers in cropland. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across different soil pH levels are still unclear. In the present work, vegetable soils at four pH levels were tested to determine the impacts of nitrification and urease inhibitors on the nitrification activities, abundances and diversities of ammonia oxidizers at different pHs by real-time PCR, terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analysis. The analyses of the abundance of ammonia oxidizers and net nitrification rate suggested that AOA was the dominate ammonia oxidizer and the key driver of nitrification in acidic soil. The relationships between pH and ammonia oxidizer abundance indicated that soil pH dominantly controlled the abundance of AOA but not that of AOB. The T-RFLP results suggested that soil pH could significantly affect the AOA and AOB community structure. Nitrapyrin decreased the net nitrification rate and inhibited the abundance of bacterial amoA genes in this vegetable soil, but exhibited no effect on that of the archaeal amoA genes. In contrast, NBPT just lagged the hydrolysis of urea and kept low NH4+-N levels in the soil at the early stage. It exhibited no or slight effects on the abundance and community structure of ammonia oxidizers. These results indicated that soil pH, rather than the application of urea, nitrapyrin and NBPT, was a critical factor influencing the abundance and community structure of AOA and AOB.
Collapse
|