1
|
Gao K, Geng C. Alterations in the rumen bacterial communities and metabolites of finishing bulls fed high-concentrate diets supplemented with active dry yeast and yeast culture. Front Microbiol 2022; 13:908244. [PMID: 36605509 PMCID: PMC9810264 DOI: 10.3389/fmicb.2022.908244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the effects of active dry yeast (ADY) and yeast culture (YC) supplementation on rumen bacteria and metabolites in finishing bulls fed high-concentrate diets using the full-length 16S rDNA gene sequencing and liquid chromatography-mass spectrometry. Supplementation with ADY improved the alpha diversity and relative abundance of rumen bacteria, while YC only affected relative abundance of rumen bacteria at the genus level. Sixty-three differential metabolites were identified in rumen fluid after ADY supplementation, and 17 after YC. PICRUSt2 functional prediction showed that ADY supplementation improved the capacity of amino acid metabolism, lipid metabolism, carbohydrate metabolism, metabolism of terpenoids and polyketides, and energy metabolism in rumen bacteria (all P < 0.05). Correlation analysis showed that the rumen differential metabolites following ADY supplementation were mainly related to Oligosphaera, Verruc, Mycoplasma, and Anaeroplasma. Supplementation with ADY was more effective than YC in remodeling the rumen bacterial flora structure and metabolite composition under high-concentrate diets.
Collapse
Affiliation(s)
- Kai Gao
- College of Agriculture, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
| | - Chunyin Geng
- College of Agriculture, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
| |
Collapse
|
2
|
Mariën Q, Ulčar B, Verleyen J, Vanthuyne B, Ganigué R. High-rate conversion of lactic acid-rich streams to caproic acid in a fermentative granular system. BIORESOURCE TECHNOLOGY 2022; 355:127250. [PMID: 35562021 DOI: 10.1016/j.biortech.2022.127250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Lactic acid-driven chain elongation enables upgrading low-value organic streams into caproic acid. Recently, volumetric production rates over 0.5 g L-1 h-1have been reported for carbohydrate-rich streams in expanded granular sludge bed (EGSB) reactors. However, many target streams contain mixtures of carbohydrates and lactic acid, and little is known about their impact on product profile and microbial ecology, or the importance of carbohydrates as substrate to achieve high rates. This manuscript investigated varying glucose-to-lactate ratios and observed that decreasing glucose-content eliminated odd-chain by-products, while glucose omission required acetic acid addition to support lactic acid conversion. Decreasing the glucose-content fed resulted in decreasing amounts of granular biomass, with the disappearance of granules when no glucose was fed. Lowering the HRT to 0.3 days while feeding only lactic and acetic acid likely triggered re-granulation, enabling the highest lactic acid-driven caproic acid production rates reported thus far at 16.4 ± 1.7 g L-1 d-1.
Collapse
Affiliation(s)
- Quinten Mariën
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| | - Barbara Ulčar
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| | - Jesper Verleyen
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Benjamin Vanthuyne
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Jing M, Zhang H, Wei M, Tang Y, Xia Y, Chen Y, Shen Z, Chen C. Reactive Oxygen Species Partly Mediate DNA Methylation in Responses to Different Heavy Metals in Pokeweed. FRONTIERS IN PLANT SCIENCE 2022; 13:845108. [PMID: 35463456 PMCID: PMC9021841 DOI: 10.3389/fpls.2022.845108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
DNA methylation is a rapid response strategy promoting plant survival under heavy metal (HM) stress. However, the roles of DNA methylation underlying plant adaptation to HM stress remain largely unknown. Here, we used pokeweed, a hyperaccumulator of manganese (Mn) and cadmium (Cd), to explore responses of plant to HM stress at phenotypic, transcriptional and DNA methylation levels. Mn- and Cd-specific response patterns were detected in pokeweed. The growth of pokeweed was both inhibited with exposure to excess Mn/Cd, but pokeweed distinguished Mn and Cd with different subcellular distributions, ROS scavenging systems, transcriptional patterns including genes involved in DNA methylation, and differentially methylated loci (DML). The number of DML between Mn/Cd treated and untreated samples increased with increased Mn/Cd concentrations. Meanwhile, pretreatment with NADPH oxidase inhibitors prior to HM exposure markedly reduced HM-induced reactive oxygen species (ROS), which caused reductions in expressions of DNA methylase and demethylase in pretreated samples. The increased levels of HM-induced demethylation were suppressed with alleviated ROS stress, and a series of HM-related methylated loci were also ROS-related. Taken together, our study demonstrates that different HMs affect different DNA methylation sites in a dose-dependent manner and changes in DNA methylation under Mn/Cd stress are partly mediated by HM-induced ROS.
Collapse
Affiliation(s)
- Minyu Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyue Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongwei Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Biohydrogen-producing from bottom to top? Quali-quantitative characterization of thermophilic fermentative consortia reveals microbial roles in an upflow fixed-film reactor. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Zai X, Luo W, Bai W, Li Y, Xiao X, Gao X, Wang E, Wei G, Chen W. Effect of Root Diameter on the Selection and Network Interactions of Root-Associated Bacterial Microbiomes in Robinia pseudoacacia L. MICROBIAL ECOLOGY 2021; 82:391-402. [PMID: 33449130 DOI: 10.1007/s00248-020-01678-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
Abstract
The high plasticity of root morphology, physiology, and function influences root-associated microbiomes. However, the variation in root-associated microbiome diversity and structures in response to root diameter at different root depths remains poorly understood. Here, we selected black locust (Robinia pseudoacacia L.) as a model plant to investigate the selection and network interactions of rhizospheric and root endophytic bacterial microbiomes associated with roots of different diameters (1, 1-2, and > 2 mm) among root depths of 0-100 cm via the Illumina sequencing of the 16S rRNA gene. The results showed that the alpha diversity of the root-associated bacterial communities decreased with increasing root diameters among different root depths; fewer orders with higher relative abundance, especially in the endosphere, were enriched in association with coarse roots (> 2 mm) than fine roots among root depths. Furthermore, the variation in the enriched bacterial orders associated with different root diameters was explained by bulk soil properties. Higher co-occurrence network complexity and stability emerged in the rhizosphere microbiomes of fine roots than those of coarse roots, in contrast to the situation in the endosphere microbiomes. In particular, the endosphere of roots with a diameter of 1-2 mm exhibited the lowest network complexity and stability and a high proportion of keystone taxa (e.g., Cytophagia, Flavobacteriia, Sphingobacteriia, β-Proteobacteria, and γ-Proteobacteria), suggesting a keystone taxon-reliant strategy in this transitional stage. In summary, this study indicated that root diameter at different root depths differentially affects rhizospheric and endophytic bacterial communities, which implies a close relationship between the bacterial microbiome, root function, and soil properties.
Collapse
Affiliation(s)
- Xiaoyu Zai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Wen Luo
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Wenqing Bai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Yuhua Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Xiao Xiao
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xuee Gao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Entao Wang
- Depatamento de Microbiología, Escuela Nacional de Ciencias Biologicas, Instituto Politécnico Nacional, 11340, Mexico, D.F., Mexico
| | - Gehong Wei
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Weimin Chen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Wan Ab Karim Ghani W, Salleh M, Adam S, Shafri H, Shaharum S, Lim K, Rubinsin N, Lam H, Hasan A, Samsatli S, Tapia J, Khezri R, Jaye IFM, Martinez-Hernandez E. Sustainable bio-economy that delivers the environment–food–energy–water nexus objectives: The current status in Malaysia. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Zhang X, Rabaey K, Prévoteau A. Reversible Effects of Periodic Polarization on Anodic Electroactive Biofilms. ChemElectroChem 2019. [DOI: 10.1002/celc.201900228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Zhang
- Center for Microbial Ecology and Technology (CMET)Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET)Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET)Ghent University Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
8
|
De Vrieze J, Boon N, Verstraete W. Taking the technical microbiome into the next decade. Environ Microbiol 2018; 20:1991-2000. [PMID: 29745026 DOI: 10.1111/1462-2920.14269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
The 'microbiome' has become a buzzword. Multiple new technologies allow to gather information about microbial communities as they evolve under stable and variable environmental conditions. The challenge of the next decade will be to develop strategies to compose and manage microbiomes. Here, key aspects are considered that will be of crucial importance for future microbial technological developments. First, the need to deal not only with genotypes but also particularly with phenotypes is addressed. Microbial technologies are often highly dependent on specific core organisms to obtain the desired process outcome. Hence, it is essential to combine omics data with phenotypic information to invoke and control specific phenotypes in the microbiome. Second, the development and application of synthetic microbiomes is evaluated. The central importance of the core species is a no-brainer, but the implementation of proper satellite species is an important route to explore. Overall, for the next decade, microbiome research should no longer almost exclusively focus on its capacity to degrade and dissipate but rather on its remarkable capability to capture disordered components and upgrade them into high-value microbial products. These products can become valuable commodities in the cyclic economy, as reflected in the case of 'reversed sanitation', which is introduced here.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium.,Avecom NV, Industrieweg 122P, Wondelgem 9032, Belgium
| |
Collapse
|
9
|
Zhao J, Yao Y, Li D, Xu H, Wu J, Wen A, Xie M, Ni Q, Zhang M, Peng G, Xu H. Characterization of the Gut Microbiota in Six Geographical Populations of Chinese Rhesus Macaques (Macaca mulatta), Implying an Adaptation to High-Altitude Environment. MICROBIAL ECOLOGY 2018; 76:565-577. [PMID: 29372281 DOI: 10.1007/s00248-018-1146-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/09/2018] [Indexed: 05/05/2023]
Abstract
Knowledge about the impact of different geographical environments on rhesus macaque gut microbiota is limited. In this study, we compared the characteristics of gut microbiota in six different Chinese rhesus macaque populations, including Hainan, Nanning, Guizhou, Xichang, Jianchuan and Tibet. Through the composition analysis of operational taxonomic units (OTUs), we found that there were significant differences in the abundance of core overlapping OTUs in the six Chinese groups. Specifically, the Tibet population exhibited the highest gut microbial diversity and the most unique OTUs. Statistically significant differences in the composition of gut microbiota among the six groups at phylum and family level were evident. Specifically, Tibet had higher abundances of Firmicutes and lower abundances of Bacteroidetes than the other geographical groups, and the higher abundance of Firmicutes in the Tibetan group was mainly caused by a significant increase in the family Ruminococcaceae and Christensenellaceae. Phylogenetic investigation of communities by reconstruction of unobserved state analysis showed that the enrichment ratio for environmental information processing and organismal systems was the highest in the Tibet population. Additionally, our results suggested that in the adaptation process of rhesus macaques to different geographical environments, the abundance of the core common flora of the intestinal microbes had undergone varying degree of change and produced new and unique flora, both of which helped to reshape the gut microbiota of rhesus macaques. In particular, this change was more obvious for animals in the high-altitude environments.
Collapse
Affiliation(s)
- Junsong Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, 625014, Sichuan, People's Republic of China
| | - Diyan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaming Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, 625014, Sichuan, People's Republic of China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, 625014, Sichuan, People's Republic of China
| | - Anxiang Wen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, 625014, Sichuan, People's Republic of China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, 625014, Sichuan, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
A novel non-dairy beverage from durian pulp fermented with selected probiotics and yeast. Int J Food Microbiol 2018; 265:1-8. [DOI: 10.1016/j.ijfoodmicro.2017.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/27/2017] [Accepted: 10/28/2017] [Indexed: 01/13/2023]
|
11
|
Khor WC, Andersen S, Vervaeren H, Rabaey K. Electricity-assisted production of caproic acid from grass. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:180. [PMID: 28702085 PMCID: PMC5504738 DOI: 10.1186/s13068-017-0863-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Medium chain carboxylic acids, such as caproic acid, are conventionally produced from food materials. Caproic acid can be produced through fermentation by the reverse β-oxidation of lactic acid, generated from low value lignocellulosic biomass. In situ extraction of caproic acid can be achieved by membrane electrolysis coupled to the fermentation process, allowing recovery by phase separation. RESULTS Grass was fermented to lactic acid in a leach-bed-type reactor, which was then further converted to caproic acid in a secondary fermenter. The lactic acid concentration was 9.36 ± 0.95 g L-1 over a 33-day semi-continuous operation, and converted to caproic acid at pH 5.5-6.2, with a concentration of 4.09 ± 0.54 g L-1 during stable production. The caproic acid product stream was extracted in its anionic form, concentrated and converted to caproic acid by membrane electrolysis, resulting in a >70 wt% purity solution. In a parallel test exploring the upper limits of production rate through cell retention, we achieved the highest reported caproic acid production rate to date from a lignocellulosic biomass (grass, via a coupled process), at 0.99 ± 0.02 g L-1 h-1. The fermenting microbiome (mainly consisting of Clostridium IV and Lactobacillus) was capable of producing a maximum caproic acid concentration of 10.92 ± 0.62 g L-1 at pH 5.5, at the border of maximum solubility of protonated caproic acid. CONCLUSIONS Grass can be utilized as a substrate to produce caproic acid. The biological intermediary steps were enhanced by separating the steps to focus on the lactic acid intermediary. Notably, the pipeline was almost completely powered through electrical inputs, and thus could potentially be driven from sustainable energy without need for chemical input.Graphical abstractMicrobial and electrochemical production of lactic acid, caproic acid and decane from grass.
Collapse
Affiliation(s)
- Way Cern Khor
- Department of Biochemical and Microbial Technology, Centre for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephen Andersen
- Department of Biochemical and Microbial Technology, Centre for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Han Vervaeren
- Department of Biochemical and Microbial Technology, Centre for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Department of Biochemical and Microbial Technology, Centre for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|