1
|
Liang Z, Zhang C, Liu X, Yang K, Xiong Z, Liang B, Mai J, Xiao X, Liu J, Yang P, Xu D, Zhou Z. Neutrophil-activating protein in Bacillus spores inhibits casein allergy via TLR2 signaling. Front Immunol 2024; 15:1428079. [PMID: 39564136 PMCID: PMC11574345 DOI: 10.3389/fimmu.2024.1428079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Background Milk allergy commonly occurs in children, mainly caused by bovine-derived casein (CAS) protein. Neutrophil-activating protein (NAP) of Helicobacter pylori plays an immunomodulatory role with potential to suppress Th2-type immune responses. Bacillus subtilis (B. subtilis) spores are commonly used as oral vectors for drug delivery. Objective To investigate whether recombinantly expressed NAP on B. subtilis spores could be an effective treatment for CAS allergy in mouse. Methods After CAS sensitization, mice were orally administered B. subtilis spores expressing recombinant NAP for 6 weeks. Allergic symptoms and parameters were evaluated after CAS challenge oral gavage, including allergic inflammation, splenic cytokines, and serum-specific antibodies. Protein levels of Toll-like receptor 2 (TLR2) and c-JUN in the jejunum tissue were measured by western blot. Bone marrow-derived macrophages (BMDMs) were stimulated with inactivated NAP spores to measure the influence on cytokine profiles in vitro. Results NAP recombinant spore treatment significantly reduced allergic symptoms and intestinal inflammation. Interleukin-12 and interferon-gamma levels increased, whereas serum CAS-specific IgG1 and IgE levels decreased. TLR2 and c-JUN expression levels were elevated in the jejunal tissue. Inactivated NAP spores polarized BMDMs to the M1 phenotype and enhanced cytokine expression, which were inhibited by a TLR2 neutralizing antibody. Conclusion NAP offers a new strategy in the treatment of CAS allergy by inhibiting the Th2 response, while eliciting macrophages to promote Th1 immune responses.
Collapse
Affiliation(s)
- Zhuwei Liang
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- Clinical Laboratory, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine), Guangzhou, Guangdong, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Chao Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xiaoyu Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Kaiyue Yang
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
| | - Zhile Xiong
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingshao Liang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jialiang Mai
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Clinical Laboratory, Foshan Maternity and Child Health Hospital, Foshan, Guangdong, China
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jie Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Pingchang Yang
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Damo Xu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhenwen Zhou
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liu M, Wang Y, Du B. Update on the association between Helicobacter pylori infection and asthma in terms of microbiota and immunity. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:4. [PMID: 38221621 PMCID: PMC10788013 DOI: 10.1186/s13223-024-00870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
H. pylori is a gram-negative bacterium that is usually acquired in childhood and can persistently colonize the gastric mucosa of humans, affecting approximately half of the world's population. In recent years, the prevalence of H. pylori infection has steadily reduced while the risk of allergic diseases has steadily climbed. As a result, epidemiological research indicates a strong negative association between the two. Moreover, numerous experimental studies have demonstrated that eradicating H. pylori increases the risk of allergic diseases. Hence, it is hypothesized that H. pylori infection may act as a safeguard against allergic diseases. The hygiene hypothesis, alterations in gut microbiota, the development of tolerogenic dendritic cells, and helper T cells could all be involved in H. pylori's ability to protect against asthma. Furthermore, Studies on mice models have indicated that H. pylori and its extracts are crucial in the management of asthma. We reviewed the in-depth studies on the most recent developments in the relationship between H. pylori infection and allergic diseases, and we discussed potential mechanisms of the infection's protective effect on asthma in terms of microbiota and immunity. We also investigated the prospect of the application of H. pylori and its related components in asthma, so as to provide a new perspective for the prevention or treatment of allergic diseases.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Wang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Du
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Fu HW, Lai YC. The Role of Helicobacter pylori Neutrophil-Activating Protein in the Pathogenesis of H. pylori and Beyond: From a Virulence Factor to Therapeutic Targets and Therapeutic Agents. Int J Mol Sci 2022; 24:ijms24010091. [PMID: 36613542 PMCID: PMC9820732 DOI: 10.3390/ijms24010091] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori neutrophil-activating protein (HP-NAP), a major virulence factor of H. pylori, plays a role in bacterial protection and host inflammation. HP-NAP activates a variety of innate immune cells, including neutrophils, monocytes, and mast cells, to induce their pro-oxidant and pro-inflammatory activities. This protein also induces T-helper type 1 (Th1) immune response and cytotoxic T lymphocyte (CTL) activity, supporting that HP-NAP is able to promote gastric inflammation by activation of adaptive immune responses. Thus, HP-NAP is a potential therapeutic target for the treatment of H. pylori-induced gastric inflammation. The inflammatory responses triggered by HP-NAP are mediated by a PTX-sensitive G protein-coupled receptor and Toll-like receptor 2. Drugs designed to block the interactions between HP-NAP and its receptors could alleviate the inflammation in gastric mucosa caused by H. pylori infection. In addition, HP-NAP acts as a promising therapeutic agent for vaccine development, allergy treatment, and cancer immunotherapy. The high antigenicity of HP-NAP makes this protein a component of vaccines against H. pylori infection. Due to its immunomodulatory activity to stimulate the Th1-inducing ability of dendritic cells, enhance Th1 immune response and CTL activity, and suppress Th2-mediated allergic responses, HP-NAP could also act as an adjuvant in vaccines, a drug candidate against allergic diseases, and an immunotherapeutic agent for cancer. This review highlights the role of HP-NAP in the pathogenesis of H. pylori and the potential for this protein to be a therapeutic target in the treatment of H. pylori infection and therapeutic agents against H. pylori-associated diseases, allergies, and cancer.
Collapse
Affiliation(s)
- Hua-Wen Fu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-574-2485
| | - Yu-Chang Lai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Codolo G, Coletta S, D’Elios MM, de Bernard M. HP-NAP of Helicobacter pylori: The Power of the Immunomodulation. Front Immunol 2022; 13:944139. [PMID: 35844568 PMCID: PMC9277015 DOI: 10.3389/fimmu.2022.944139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The miniferritin HP-NAP of Helicobacter pylori was originally described as a neutrophil-activating protein because of the capacity to activate neutrophils to generate oxygen radicals and adhere to endothelia. Currently, the main feature for which HP-NAP is known is the ability to promote Th1 responses and revert the immune suppressive profile of macrophages. In this review, we discuss the immune modulating properties of the protein regarding the H. pylori infection and the evidence that support the potential clinical application of HP-NAP in allergy and cancer immunotherapy.
Collapse
Affiliation(s)
- Gaia Codolo
- Department of Biology, University of Padova, Padova, Italy
| | - Sara Coletta
- Department of Biology, University of Padova, Padova, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- *Correspondence: Marina de Bernard, ; Mario Milco D’Elios,
| | - Marina de Bernard
- Department of Biology, University of Padova, Padova, Italy
- *Correspondence: Marina de Bernard, ; Mario Milco D’Elios,
| |
Collapse
|
5
|
Zhang K, Mirza WA, Ni P, Yu M, Wang C, Wang B, Chang S, Yue L, Zhang R, Duan G. Recombination Lactococcus lactis expressing Helicobacter pylori neutrophil-activating protein A attenuates food allergy symptoms in mice. FEMS Microbiol Lett 2021; 368:6179882. [PMID: 33749737 DOI: 10.1093/femsle/fnab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Food allergy has been a significant public health issue with growing severity, prevalence and limited treatments. The neutrophil-activating protein A subunit (NapA) of Helicobacter pylori has been shown to have therapeutic potential in allergic diseases. METHODS The NapA expression efficiency of recombinant Lactococcus lactis(L.lactis) were determined. The effects of recombinant bacterium on food allergy in Balb/c mice were also investigated. RESULTS NapA were delivered and expressed efficiently via L. lactis. The engineered bacterium ameliorated food allergy symptoms (acute diarrhea and intestinal inflammation) and decreased serum histamine levels. In addition, the secretion of OVA-specific IgG2a, IFN-γ was promoted and the level of IL-4, OVA-specific IgE was restrained. CONCLUSIONS The recombinant strain may attenuate food allergy in mice through immune regulatory effect, which may be a promising approach for preventing or treating food allergy.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Wajid Ameen Mirza
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Mingyang Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Chen Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Shuailei Chang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Limin Yue
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China.,Department of Epidemiology, College of Public Health, Hainan Medical University, Haikou 571199, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| |
Collapse
|
6
|
Lin D, He H, Sun J, He X, Long W, Cui X, Sun Y, Zhao S, Zheng X, Zeng Z, Zhang K, Wang H. Co-delivery of PSMA antigen epitope and mGM-CSF with a cholera toxin-like chimeric protein suppressed prostate tumor growth via activating dendritic cells and promoting CTL responses. Vaccine 2021; 39:1609-1620. [PMID: 33612342 DOI: 10.1016/j.vaccine.2021.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023]
Abstract
Subunit vaccines derived from tumor antigens play a role in tumor therapy because of their unique advantages. However, because of the weak immunogenicity of peptides in subunit vaccines, it is difficult to trigger an effective cytotoxic T lymphocyte (CTL) response, which is critical for cancer therapy. A requirement for the activation of CTL cells by exogenous antigens is the stimulation of antigen presenting cells (APC) with the help of adjuvants and cross-presentation to T lymphocytes. Standard nonconjugated adjuvant-peptide mixtures do not ensure co-targeting of the antigen and the adjuvant to the same APC, which limits the effects of adjuvants. In this study, a fusion protein consisting of murine granulocyte-macrophage colony stimulating factor (mGM-CSF) fused with CTA2 (A2 subunit of cholera toxin) was generated and assembled with CTB-PSMA624-632 (prostate specific membrane antigen (PSMA) peptide 624-632 fused to CTB) to obtain a cholera toxin-like protein. The chimeric protein retained the biological activity of mGM-CSF and had stronger GM1 binding activity than (CTB-PSMA624-632)5. C57BL/6J mice immunized with the CT-like chimeric protein exhibited delayed tumor growth following challenge with human PSMA-EGFP-expressing RM-1 cells. Experiment results showed that the CT-like chimeric protein could induce the maturation of DC cells and improve CTL responses. Overall, these results indicate that the nasal administration of a CT-like chimeric protein vaccine results in the development of effective immunity against prostate tumor cells and might be useful for future clinical anti-tumoral applications.
Collapse
Affiliation(s)
- Danmin Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huafeng He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiajie Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xianying He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiping Cui
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yunxiao Sun
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, PR China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xi Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zheng Zeng
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, PR China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China; School of Biotechnology and Health, Wuyi University, Jiangmen 529020, PR China
| | - Huaqian Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Xiong Z, Mai J, Li F, Liang B, Yao S, Liang Z, Zhang C, Gao F, Ai X, Wang J, Long Y, Yang M, Gong S, Zhou Z. Oral administration of recombinant Bacillus subtilis spores expressing mutant staphylococcal enterotoxin B provides potent protection against lethal enterotoxin challenge. AMB Express 2020; 10:215. [PMID: 33315153 PMCID: PMC7734462 DOI: 10.1186/s13568-020-01152-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Pathogenicity of Staphylococcus aureus is induced by staphylococcal enterotoxin B (SEB). A mutant form of SEB (mSEB) is immunogenic as well as less toxic. Recombinant mSEB and SEB were expressed in pET28a prokaryotic plasmids. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in mSEB-stimulated macrophages were lower than those in SEB-stimulated macrophages (p < 0.001, p < 0.01 respectively). Using CotC as a fusion protein, we constructed recombinant Bacillus subtilis spores expressing mSEB on the spore surface and evaluated their safety and protective efficacy via mouse models. Oral administration of mSEB-expressing spores increased SEB-specific IgA in feces and SEB-specific IgG1 and IgG2a in the sera, compared with mice in naïve and CotC spore-treated groups (p < 0.001, p < 0.01, p < 0.001 respectively). Six weeks following oral dosing of recombinant spores, significant differences were not found in the serum biochemical indices between the mSEB group and the naïve and CotC groups. Furthermore, oral administration of mSEB spores increased the survival rate by 33.3% in mice intraperitoneally injected with 5 µg of wild-type SEB plus 25 µg lipopolysaccharide (LPS). In summation, recombinant spores stably expressing mSEB were developed, and oral administration of such recombinant spores induced a humoral immune response and provided protection against SEB challenge in mice.
Collapse
|
8
|
Oral Immunotherapy Using Probiotic Ice Cream Containing Recombinant Food-Grade Lactococcus lactis Which Inhibited Allergic Responses in a BALB/c Mouse Model. J Immunol Res 2020; 2020:2635230. [PMID: 33029537 PMCID: PMC7532367 DOI: 10.1155/2020/2635230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/28/2023] Open
Abstract
This study was conducted to evaluate the effects of recombinant probiotic bacteria as a candidate for oral vaccine with the potential of treating allergy to Amaranthus retroflexus pollens. The main gene of this allergen, Ama r 2, was cloned into the food grade plasmid pNZ7025 and then was electrotransformed into the food grade Lactococcus lactis NZ1330. No expression was observed in the primary structure due to the distance between the ribosome binding site and the start codon. Therefore, the vector structure was corrected using the site-directed mutagenesis (SDM) technique. The cell extract of this strain was used for assessing the expression of the recombinant allergen in western blot analysis, and the existence of this protein with a molecular weight of 14.2 kDa was confirmed. To evaluate the efficacy of this strain in the treatment of allergies as an oral vaccine, probiotic ice cream was prepared. After the sensitization of mice, the treatment was performed by oral immunotherapy for 4 weeks, 4 to 5 times per week. 20 μl of functional ice cream with 1012 CFU/ml of r-L. lactis NZ1330 significantly reduced the serum IgE level. The levels of IFN-γ and TGF-β cytokines increased in the 20 μl ice cream treatment group as well as 40 μg/ml pure allergen compared with the PBS-treated group, and IL-4 cytokine levels decreased compared with the PBS-treated group. Overall, 20 μl ice cream with 1012 CFU/ml of the recombinant bacteria resulted in the best performance in terms of improving allergies to Th1 and Treg responses.
Collapse
|
9
|
Xia J, Zu Q, Yang A, Wu Z, Li X, Tong P, Yuan J, Wu Y, Fan Q, Chen H. Allergenicity reduction and rheology property of Lactobacillus-fermented soymilk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6841-6849. [PMID: 31385312 DOI: 10.1002/jsfa.9969] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND This study aimed to investigate the reduction in the potential allergenicity of soymilk, and its rheological properties, after fermentation with Lactobacillus. Soymilk (SM) was fermented with Lactobacillus brevis and Lactobacillus sp. The molecular weight of fermented soymilk (FSM) was characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the potential allergenicity of FSM was analyzed using enzyme-linked immunosorbent assay in vitro and the BALB/c mouse model to detect changes in histamine, mouse mast cell protease-1 (mMCP-1), allergen-specific IgG/IgE, and cytokine levels and histomorphology of jejunum in vivo. RESULTS The SDS-PAGE and enzyme linked immunosorbent assay (ELISA) showed that allergens of soybean (β-conglycinin and acidic subunit of glycinin) were almost degraded, and their immunoreactivity was decreased. In the BALB/c mouse model, the FSM group did not show anaphylactic shock symptoms compared with the SM group. Moreover, a tendency toward decreased serum allergen-specific IgG/IgE levels, plasma histamine levels, and mMCP-1 concentrations was observed in the FSM group. Furthermore, Th2-related cytokines were decreased, while IFN-γ production increased in spleen cell cultures. The intestinal villus was slightly damaged after the challenge. All these findings indicated that the Th1/Th2 balance in the FSM group shifted toward a Th1 response, ultimately reducing the potential allergenicity of FSM. Rheological assessment suggested that FSM has good viscous and pseudoplastic properties. CONCLUSION Fermentation might be a promising method for producing tasty, hypoallergenic soybean products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Qinqin Zu
- Huainan Municipal Food and Drug Inspection Center, Huainan, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Juanli Yuan
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Qingsheng Fan
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Mai J, Liang B, Xiong Z, Ai X, Gao F, Long Y, Yao S, Liu Y, Gong S, Zhou Z. Oral administration of recombinant
Bacillus subtilis
spores expressing
Helicobacter pylori
neutrophil‐activating protein suppresses peanut allergy via up‐regulation of Tregs. Clin Exp Allergy 2019; 49:1605-1614. [DOI: 10.1111/cea.13489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jialiang Mai
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Bingshao Liang
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Zhile Xiong
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Xiaolan Ai
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Fei Gao
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Yan Long
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Shuwen Yao
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Yunfeng Liu
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Sitang Gong
- Pediatric Gastroenterology Department Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Zhenwen Zhou
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| |
Collapse
|
11
|
Mei B, Cui F, Wu C, Wen Z, Wang W, Shen M. Roles of citric acid in conjunction with saline nebulization in experimental tracheostomy in guinea pigs. Exp Lung Res 2019; 44:433-442. [PMID: 30973274 DOI: 10.1080/01902148.2018.1516832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Tracheostomy usually accompanied by the impairment of cough reflex, which may affect the clearance of secretions and result in the occurrence and development of pulmonary inflammation. Previous research has demonstrated that citric acid could effectively evoke cough. However, there are limited data available on this topic specific to the cough stimulation method, and the roles of citric acid in tracheostomy still remain obscure. The aims of present study were to identify the potential roles of citric acid in conjunction with saline nebulization in tracheostomy in guinea pigs. MATERIALS AND METHODS Experimental tracheostomy model was induced in guinea pigs, and different nebulization interventions were implemented. The expression of P-selectin and platelet count were analyzed by flow cytometer and automatic globulimeter, the histological changes in trachea and lung tissue were assessed by hematoxylin and eosin staining, and the inflammatory cytokines and substance P (SP) levels in bronchoalveolar lavage fluid were evaluated by enzyme-linked immunosorbent assay. RESULTS Tracheostomy resulted in the disorder of trachea mucosa and cilia, the inflammatory cell infiltration in lung tissue, the increase of IL-6, TNF-α levels and the decrease of SP level. Citric acid alone increase the SP level, and the joint action of citric acid and saline nebulization further showed significantly beneficial effects on pathological, inflammatory changes and SP level. CONCLUSIONS Citric acid combined with saline nebulization contributes to the alleviation of tracheotomy-induced tracheal damage and pulmonary inflammation in an experimental tracheostomy model in guinea pigs. This may provide novel insights into the inflammation management and cough recovery after tracheostomy.
Collapse
Affiliation(s)
- Binbin Mei
- a Institute of Nursing, Zhejiang Chinese Medical University , Hangzhou , China
| | - Feifei Cui
- b Department of Intensive Care Unit , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Chao Wu
- c Department of Neurosurgery , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Zunjia Wen
- d Surgery Intensive Care Unit, Nanjing Children's Hospital , Nanjing , China
| | - Wenting Wang
- c Department of Neurosurgery , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Meifen Shen
- c Department of Neurosurgery , the First Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
12
|
Jing Y, Liu H, Xu W, Yang Q. Amelioration of the DSS-induced colitis in mice by pretreatment with 4,4'-diaponeurosporene-producing Bacillus subtilis. Exp Ther Med 2017; 14:6069-6073. [PMID: 29285159 PMCID: PMC5740520 DOI: 10.3892/etm.2017.5282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronically relapsing inflammatory disorder of the gastrointestinal tract. Current IBD treatments have poor tolerability and insufficient therapeutic efficacy, thus, alternative therapeutic approaches are required. Recently, a number of dietary supplements have emerged as promising interventions. In the present study oral administration of a carotenoid (4,4'-diaponeurosporene)-producing Bacillus subtilis markedly ameliorated dextran sulfate sodium salt-induced mouse colitis, as demonstrated by a reduction in weight loss and the severity of bleeding, which indicated that 4,4'-diaponeurosporene may have beneficial effects on treatments for colitis. This preliminary study indicated that 4,4'-diaponeurosporene may function synergistically with probiotics to provide a novel and effective strategy to prevent colitis.
Collapse
Affiliation(s)
- Yuchao Jing
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Haofei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Wenwen Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|