1
|
Tian L, Qi T, Zhang F, Tran VG, Yuan J, Wang Y, He N, Cao M. Synthetic biology approaches to improve tolerance of inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2025; 78:108477. [PMID: 39551454 DOI: 10.1016/j.biotechadv.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Increasing attention is being focused on using lignocellulose for valuable products. Microbial decomposition can convert lignocellulose into renewable biofuels and other high-value bioproducts, contributing to sustainable development. However, the presence of inhibitors in lignocellulosic hydrolysates can negatively affect microorganisms during fermentation. Improving microbial tolerance to these hydrolysates is a major focus in metabolic engineering. Traditional detoxification methods increase costs, so there is a need for cheap and efficient cell-based detoxification strategies. Synthetic biology approaches offer several strategies for improving microbial tolerance, including redox balancing, membrane engineering, omics-guided technologies, expression of protectants and transcription factors, irrational engineering, cell flocculation, and other novel technologies. Advances in molecular biology, high-throughput sequencing, and artificial intelligence (AI) allow for precise strain modification and efficient industrial production. Developing AI-based computational models to guide synthetic biology efforts and creating large-scale heterologous libraries with automation and high-throughput technologies will be important for future research.
Collapse
Affiliation(s)
- Linyue Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tianqi Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
2
|
Song Q, Wu H, Zhang P, Zhu H, Xie J, Liu J, Qiao J. The MarR family regulator RmaH mediates acid tolerance of Lactococcus lactis through regulating peptidoglycan modification genes. J Dairy Sci 2024:S0022-0302(24)01078-6. [PMID: 39154730 DOI: 10.3168/jds.2024-25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Lactococcus lactis, widely used in the food fermentation industry, has developed various ways to regulate acid adaptation in the process of evolution. The investigation into how peptidoglycan (PG) senses and responds to acid stress is an expanding field. Here, we addressed the regulation of murT-gatD genes which are responsible for the amidation of PG D-Glu. We found that lactic acid stress reduced murT-gatD expression, and overexpressing these genes notably decreased acid tolerance of L. lactis NZ9000, possibly due to a reduction in PG's negative charge, facilitating the influx of extracellular protons into the cell. Subsequently, using a combination of DNA pull-down assay and electrophoretic mobility shift assay (EMSA), we identified a novel MarR family regulator, RmaH, as an activator of murT-gatD transcription. Further MEME motif prediction, EMSA verification and fluorescent protein reporter assay showed that RmaH directly bound to the DNA motif 5'-KGVAWWTTTTGCT-3' located in the upstream region of murT-gatD. Beyond the mechanistic investigation of RmaH activation of murT-gatD, this study provides new insight into how peptidoglycan modification is regulated and responds to lactic acid stress.
Collapse
Affiliation(s)
- Qianqian Song
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;; Zhejiang Shaoxing research institute of Tianjin University, Shaoxing, 312300, China
| | - Peng Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiawei Xie
- Institute of New Energy and Low-Carbon Technology, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiaheng Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;; Zhejiang Shaoxing research institute of Tianjin University, Shaoxing, 312300, China;; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, China;; SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
3
|
Hu W, Huo X, Bai H, Chen Z, Zhang J, Yang H, Feng S. Insights into the complementation potential of the extreme acidophile's orthologue in replacing Escherichia coli hfq gene-particularly in bacterial resistance to environmental stress. World J Microbiol Biotechnol 2024; 40:105. [PMID: 38386219 DOI: 10.1007/s11274-024-03924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δhfq/Achfq, constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by hfq deletion in Escherichia coli, including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δhfq mutant. Transcriptomic analysis revealed that even under heterologous expression, AcHfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of AcHfq in bacterial resistance to environmental stress.
Collapse
Affiliation(s)
- Wenbo Hu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xingyu Huo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Haochen Bai
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Zongling Chen
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| |
Collapse
|
4
|
Liu G, Chang H, Qiao Y, Huang K, Zhang A, Zhao Y, Feng Z. Profiles of Small Regulatory RNAs at Different Growth Phases of Streptococcus thermophilus During pH-Controlled Batch Fermentation. Front Microbiol 2021; 12:765144. [PMID: 35035386 PMCID: PMC8753986 DOI: 10.3389/fmicb.2021.765144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Small regulatory RNA (sRNA) has been shown to play an important role under various stress conditions in bacteria, and it plays a vital role in regulating growth, adaptation and survival through posttranscriptional control of gene expression in bacterial cells. Streptococcus thermophilus is widely used as a starter culture in the manufacture of fermented dairy products. However, the lack of reliable information on the expression profiles and potential physiological functions of sRNAs in this species hinders our understanding of the importance of sRNAs in S. thermophilus. The present study was conducted to assess the expression profiles of sRNAs in S. thermophilus and to identify sRNAs that exhibited significant changes. A total of 530 potential sRNAs were identified, including 198 asRNAs, 135 sRNAs from intergenic regions, and 197 sRNAs from untranslated regions (UTRs). Significant changes occurred in the expression of 238, 83, 194, and 139 sRNA genes during the lag, early exponential growth, late exponential growth, and stationary phases, respectively. The expression of 14 of the identified sRNAs was verified by qRT-PCR. Predictions of the target genes of these candidate sRNAs showed that the primary metabolic pathways targeted were involved in carbon metabolism, biosynthesis of amino acids, ABC transporters, the metabolism of amino and nucleotide sugars, purine metabolism, and the phosphotransferase system. The expression of the predicted target genes was further analyzed to better understand the roles of sRNAs during different growth stages. The results suggested that these sRNAs play crucial roles by regulating biological pathways during different growth phases of S. thermophilus. According to the results, sRNAs sts141, sts392, sts318, and sts014 are involved in the regulation of osmotic stress. sRNAs sts508, sts087, sts372, sts141, sts375, and sts119 are involved in the regulation of starvation stress. sRNAs sts129, sts226, sts166, sts231, sts204, sts145, and sts236 are involved in arginine synthesis. sRNAs sts033, sts341, sts492, sts140, sts230, sts172, and sts377 are involved in the ADI pathway. The present study provided valuable information for the functional study of sRNAs in S. thermophilus and indicated a future research direction for sRNA in S. thermophilus. Overall, our results provided new insights for understanding the complex regulatory network of sRNAs in S. thermophilus.
Collapse
Affiliation(s)
- Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Haode Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Kai Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Yu Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
- Yu Zhao,
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
- College of Food and Biological Engineering, Qiqihar University, 42 Wenhua Road, 160006, Qiqihar, China
- *Correspondence: Zhen Feng,
| |
Collapse
|
5
|
Wu Z, Li Y, Zhang L, Ding Z, Shi G. Microbial production of small peptide: pathway engineering and synthetic biology. Microb Biotechnol 2021; 14:2257-2278. [PMID: 33459516 PMCID: PMC8601181 DOI: 10.1111/1751-7915.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/14/2023] Open
Abstract
Small peptides are a group of natural products with low molecular weights and complex structures. The diverse structures of small peptides endow them with broad bioactivities and suggest their potential therapeutic use in the medical field. The remaining challenge is methods to address the main limitations, namely (i) the low amount of available small peptides from natural sources, and (ii) complex processes required for traditional chemical synthesis. Therefore, harnessing microbial cells as workhorse appears to be a promising approach to synthesize these bioactive peptides. As an emerging engineering technology, synthetic biology aims to create standard, well-characterized and controllable synthetic systems for the biosynthesis of natural products. In this review, we describe the recent developments in the microbial production of small peptides. More importantly, synthetic biology approaches are considered for the production of small peptides, with an emphasis on chassis cells, the evolution of biosynthetic pathways, strain improvements and fermentation.
Collapse
Affiliation(s)
- Zhiyong Wu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Youran Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Liang Zhang
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Zhongyang Ding
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Guiyang Shi
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| |
Collapse
|
6
|
Recent Research Advances in Small Regulatory RNAs in Streptococcus. Curr Microbiol 2021; 78:2231-2241. [PMID: 33963446 DOI: 10.1007/s00284-021-02484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Small non-coding RNAs (sRNAs) are a class of regulatory RNAs 20-500 nucleotides in length, which have recently been discovered in prokaryotic organisms. sRNAs are key regulators in many biological processes, such as sensing various environmental changes and regulating intracellular gene expression through binding target mRNAs or proteins. Bacterial sRNAs have recently been rapidly mined, thus providing new insights into the regulatory network of biological functions in prokaryotes. Although most bacterial sRNAs have been discovered and studied in Escherichia coli and other Gram-negative bacteria, sRNAs have increasingly been predicted and verified in Gram-positive bacteria in the past decade. The genus Streptococcus includes many commensal and pathogenic Gram-positive bacteria. However, current understanding of sRNA-mediated regulation in Streptococcus is limited. Most known sRNAs in Streptococcus are associated with the regulation of virulence. In this review, we summarize recent advances in understanding of the functions and mechanisms of sRNAs in Streptococcus, and we discuss the RNA chaperone protein and synthetic sRNA-mediated gene regulation, with the aim of providing a reference for the study of microbial sRNAs.
Collapse
|
7
|
Qiao W, Qiao Y, Liu F, Zhang Y, Li R, Wu Z, Xu H, Saris PEJ, Qiao M. Engineering Lactococcus lactis as a multi-stress tolerant biosynthetic chassis by deleting the prophage-related fragment. Microb Cell Fact 2020; 19:225. [PMID: 33298073 PMCID: PMC7727215 DOI: 10.1186/s12934-020-01487-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/28/2020] [Indexed: 01/02/2023] Open
Abstract
Background In bioengineering, growth of microorganisms is limited because of environmental and industrial stresses during fermentation. This study aimed to construct a nisin-producing chassis Lactococcus lactis strain with genome-streamlined, low metabolic burden, and multi-stress tolerance characteristics. Results The Cre-loxP recombination system was applied to reduce the genome and obtain the target chassis strain. A prophage-related fragment (PRF; 19,739 bp) in the L. lactis N8 genome was deleted, and the mutant strain L. lactis N8-1 was chosen for multi-stress tolerance studies. Nisin immunity of L. lactis N8-1 was increased to 6500 IU/mL, which was 44.44% higher than that of the wild-type L. lactis N8 (4500 IU/mL). The survival rates of L. lactis N8-1 treated with lysozyme for 2 h and lactic acid for 1 h were 1000- and 10,000-fold higher than that of the wild-type strain, respectively. At 39 ℃, the L. lactis N8-1 could still maintain its growth, whereas the growth of the wild-type strain dramatically dropped. Scanning electron microscopy showed that the cell wall integrity of L. lactis N8-1 was well maintained after lysozyme treatment. Tandem mass tags labeled quantitative proteomics revealed that 33 and 9 proteins were significantly upregulated and downregulated, respectively, in L. lactis N8-1. These differential proteins were involved in carbohydrate and energy transport/metabolism, biosynthesis of cell wall and cell surface proteins. Conclusions PRF deletion was proven to be an efficient strategy to achieve multi-stress tolerance and nisin immunity in L. lactis, thereby providing a new perspective for industrially obtaining engineered strains with multi-stress tolerance and expanding the application of lactic acid bacteria in biotechnology and synthetic biology. Besides, the importance of PRF, which can confer vital phenotypes to bacteria, was established.
Collapse
Affiliation(s)
- Wanjin Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No.94 Weijin Road, Nankai District, Tianjin, 300071, China.,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Yu Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No.94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Fulu Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No.94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Yating Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No.94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Ran Li
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No.94 Weijin Road, Nankai District, Tianjin, 300071, China.
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No.94 Weijin Road, Nankai District, Tianjin, 300071, China.
| |
Collapse
|
8
|
Girgin Ersoy Z, Kayıhan C, Tunca S. Higher nisin yield is reached with glutathione and pyruvate compared with heme in Lactococcus lactis N8. Braz J Microbiol 2020; 51:1247-1257. [PMID: 31898248 DOI: 10.1007/s42770-019-00216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022] Open
Abstract
There are different studies that aim to enhance the production of nisin by Lactococcus lactis since its chemical synthesis is not possible. In this study, glutathione (GSH) and pyruvate, which are known to reduce the oxidative stress of cells, have been shown to trigger the production of nisin at both transcriptional and translational levels in L. lactis cells grown under aerobic condition. Presence of GSH and pyruvate caused more nisin yield than the heme-supplemented medium. Moreover, the expression of genes that encode stress-related enzymes were apparently upregulated in the presence of GSH and pyruvate. It can be concluded that GSH and pyruvate contribute to the defense system of L. lactis cells and so that higher biomass was obtained which in turn enhance nisin production. Antioxidant effect of GSH and pyruvate was known; however, their stimulating effect on nisin production was shown for the first time in this study.
Collapse
Affiliation(s)
- Zeynep Girgin Ersoy
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ceyhun Kayıhan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Etimesgut, Ankara, Turkey
| | - Sedef Tunca
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
9
|
Tian K, Li Y, Wang B, Wu H, Caiyin Q, Zhang Z, Qiao J. The genome and transcriptome of Lactococcus lactis ssp. lactis F44 and G423: Insights into adaptation to the acidic environment. J Dairy Sci 2018; 102:1044-1058. [PMID: 30594364 DOI: 10.3168/jds.2018-14882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022]
Abstract
Nisin, as a common green (environmentally friendly), nontoxic antibacterial peptide secreted by Lactococcus lactis, is widely used to prevent the decomposition of meat and dairy products and maintains relatively high stability at low pH. However, the growth of Lc. lactis is frequently inhibited by high lactic acid concentrations produced during fermentation. This phenomenon has become a great challenge in enhancing the nisin yield for this strain. Here, the shuffled strain G423 that could survive on a solid plate at pH 3.7 was generated through protoplast fusion-mediated genome shuffling. The nisin titer of G423 peaked at 4,543 IU/mL, which was 59.9% higher than that of the same batch of the initial strain Lc. lactis F44. The whole genome comparisons between G423 and F44 indicated that 6 large fragments (86,725 bp) were inserted in G423 compared with that of Lc. lactis F44. Transcriptome data revealed that 4 novel noncoding transcripts, and the significantly upregulated genes were involved in multiple processes in G423. In particular, the expression of genes involved in cell wall and membrane biosynthesis was obviously perturbed under acidic stress. Quantitative real-time PCR analysis showed that the transcription of noncoding small RNA NC-1 increased by 2.35-fold at pH 3.0 compared with that of the control (pH 7.0). Overexpression assays indicated that small RNA NC-1 could significantly enhance the acid tolerance and nisin production of G423 and F44. Our work provided new insights into the sophisticated genetic mechanisms involved in Lc. lactis in an acidic environment, which might elucidate its potential application in food and dairy industries.
Collapse
Affiliation(s)
- Kairen Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Binbin Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Zhijun Zhang
- Forestry and Fruit Research Institute of Tianjin Academy of Agricultural Sciences, Tianjin 300072, P.R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China; SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China.
| |
Collapse
|
10
|
Xie C, Zeng H, Wang C, Xu Z, Qin L. Volatile flavour components, microbiota and their correlations in different sufu, a Chinese fermented soybean food. J Appl Microbiol 2018; 125:1761-1773. [PMID: 30133098 DOI: 10.1111/jam.14078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/11/2018] [Accepted: 08/16/2018] [Indexed: 12/25/2022]
Abstract
AIM To investigate the volatile flavour components (VFCs), microbiota and their correlations of three categories of sufu, a Chinese fermented soybean food. METHODS AND RESULTS The VFCs were analyzed by headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography and mass spectrometry. A total of 141 VFCs were tentatively identified, in which 12 esters, eight aldehydes, five alcohols and nine miscellaneous compounds were recognized as the characteristic VFCs through the relative odour activity value. The complex microbial community was revealed by Illumina MiSeq sequencing. Among the total 202 bacteria and 125 fungi species identified, 16 bacteria and 7 fungi species were revealed as dominant community members. Furthermore, the VFC-microbiota correlation was characterized by Spearman's rank correlation coefficients (ρ). Based on the positive VFC-microbiota correlation, two bacterial species and three fungal species were selected as potential flavour-producing microbiota. CONCLUSIONS A variety of VFCs and complicated microbiota were observed in the three categories of sufu. Lactococcus lactis, Sphingobacterium sp., Pichia fermentans, Kodamaea ohmeri and Saccharomyces rouxii were the potential flavour-producing microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY The preliminary results would be useful for designing starter cultures to produce sufu with desirable sensory properties, consistent flavour and shorter ripening time. Furthermore, these results will also provide a new insight to improve the flavour quality of traditional fermented soybean food.
Collapse
Affiliation(s)
- C Xie
- College of Life Science, Guizhou University, Guiyang, China
| | - H Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - C Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Z Xu
- Department of Food Science, Louisiana State University, Baton Rouge, LA, USA
| | - L Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou Province, Guiyang, China
| |
Collapse
|
11
|
Wu H, Song S, Tian K, Zhou D, Wang B, Liu J, Zhu H, Qiao J. A novel small RNA S042 increases acid tolerance in Lactococcus lactis F44. Biochem Biophys Res Commun 2018; 500:544-549. [DOI: 10.1016/j.bbrc.2018.04.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 11/25/2022]
|