1
|
Chen X, Liu Y, Guo W, Wang M, Zhao J, Zhang X, Zheng W. The development and nutritional quality of Lyophyllum decastes affected by monochromatic or mixed light provided by light-emitting diode. Front Nutr 2024; 11:1404138. [PMID: 38860159 PMCID: PMC11163063 DOI: 10.3389/fnut.2024.1404138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Edible fungi has certain photo-sensitivity during the mushroom emergence stage, but there has been few relevant studies on the responses of Lyophyllum decastes to different light quality. L. decastes were planted in growth chambers with different light qualities that were, respectively, white light (CK), monochromatic red light (R), monochromatic blue light (B), mixed red and blue light (RB), and the mixture of far-red and blue light (FrB). The photo-sensitivity of L. decastes was investigated by analyzing the growth characteristics, nutritional quality, extracellular enzymes as well as the light photoreceptor genes in mushroom exposed to different light treatments. The results showed that R led to mycelium degeneration, fungal skin inactivation and failure of primordial formation in L. decastes. The stipe length, stipe diameter, pileus diameter and the weight of fruiting bodies exposed to RB significantly increased by 8.0, 28.7, 18.3, and 58.2% respectively, compared to the control (p < 0.05). B significantly decreased the stipe length and the weight of fruiting body, with a decrease of 8.5 and 20.2% respectively, compared to the control (p < 0.05). Increased color indicators and deepened simulated color were detected in L. decastes pileus treated with B and FrB in relative to the control. Meanwhile, the expression levels of blue photoreceptor genes such as WC-1, WC-2 and Cry-DASH were significantly up-regulated in mushroom exposed to B and FrB (p < 0.05). Additionally, the contents of crude protein and crude polysaccharide in pileus treated with RB were, respectively, increased by 26.5 and 9.4% compared to the control, while those in stipes increased by 5.3 and 58.8%, respectively. Meanwhile, the activities of extracellular enzyme such as cellulase, hemicellulase, laccase, manganese peroxidase, lignin peroxidase and amylase were significant up-regulated in mushroom subjected to RB (p < 0.05), which may promote the degradation of the culture materials. On the whole, the largest volume and weight as well as the highest contents of nutrients were all detected in L. decastes treated with RB. The study provided a theoretical basis for the regulation of light environment in the industrial production of high quality L. decastes.
Collapse
Affiliation(s)
- Xiaoli Chen
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yihan Liu
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticultural and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Wenzhong Guo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfei Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiuxiao Zhao
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xin Zhang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wengang Zheng
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Lv T, Feng J, Jia X, Wang C, Li F, Peng H, Xiao Y, Liu L, He C. Structural insights into curdlan degradation via a glycoside hydrolase containing a disruptive carbohydrate-binding module. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:45. [PMID: 38515133 PMCID: PMC10956234 DOI: 10.1186/s13068-024-02494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Degradation via enzymatic processes for the production of valuable β-1,3-glucooligosaccharides (GOS) from curdlan has attracted considerable interest. CBM6E functions as a curdlan-specific β-1,3-endoglucanase, composed of a glycoside hydrolase family 128 (GH128) module and a carbohydrate-binding module (CBM) derived from family CBM6. RESULTS Crystallographic analyses were conducted to comprehend the substrate specificity mechanism of CBM6E. This unveiled structures of both apo CBM6E and its GOS-complexed form. The GH128 and CBM6 modules constitute a cohesive unit, binding nine glucoside moieties within the catalytic groove in a singular helical conformation. By extending the substrate-binding groove, we engineered CBM6E variants with heightened hydrolytic activities, generating diverse GOS profiles from curdlan. Molecular docking, followed by mutation validation, unveiled the cooperative recognition of triple-helical β-1,3-glucan by the GH128 and CBM6 modules, along with the identification of a novel sugar-binding residue situated within the CBM6 module. Interestingly, supplementing the CBM6 module into curdlan gel disrupted the gel's network structure, enhancing the hydrolysis of curdlan by specific β-1,3-glucanases. CONCLUSIONS This study offers new insights into the recognition mechanism of glycoside hydrolases toward triple-helical β-1,3-glucans, presenting an effective method to enhance endoglucanase activity and manipulate its product profile. Furthermore, it discovered a CBM module capable of disrupting the quaternary structures of curdlan, thereby boosting the hydrolytic activity of curdlan gel when co-incubated with β-1,3-glucanases. These findings hold relevance for developing future enzyme and CBM cocktails useful in GOS production from curdlan degradation.
Collapse
Affiliation(s)
- Tianhang Lv
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui, China
| | - Juanjuan Feng
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui, China
| | - Xiaoyu Jia
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui, China
| | - Cheng Wang
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui, China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Peng
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui, China
| | - Lin Liu
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui, China
| | - Chao He
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Fu Z, Zhang Z, Chu M, Kan N, Xiao Y, Peng H. A starch-binding domain of α-amylase (AmyPG) disrupts the structure of raw starch. Int J Biol Macromol 2024; 257:128673. [PMID: 38070806 DOI: 10.1016/j.ijbiomac.2023.128673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Most raw starch-digesting enzymes possess at least one non-catalytic starch-binding domain (SBD), which enhances enzymatic hydrolysis of insoluble starch granules. Previous studies of SBD-starch interaction mainly focus on binding affinity for substrates, while the mechanism involved disruption of starch granules remains partially understood. Raw starch-digesting α-amylases AmyPG and AmyP were from Photobacterium gaetbulicola and an uncultured marine bacterium, respectively. Here, comparative studies on the two α-amylases and their SBDs (SBDPG and SBDAmyP) with high sequence identity were carried out. The degradation capacity of AmyPG towards raw starch was approximately 2-fold higher than that of AmyP, which was due to the stronger disruptive ability of SBDPG rather than the binding ability. Two non-binding amino acids (K626, T618) of SBDPG that specifically support the disruptive ability were first identified using affinity gel electrophoresis, amylose‑iodine absorbance spectra, and differential scanning calorimetry. The mutants SBDPG-K626A and SBDPG-T618A exhibited stronger disruptive ability, while the corresponding mutants of AmyPG enhanced the final hydrolysis degree of raw starch. The results confirmed that the disruptive ability of SBD can independently affect raw starch hydrolysis. This advancement in the functional characterization of SBDs contributes to a better understanding of enzyme-starch granule interactions, pushing forward designs of raw starch-digesting enzymes.
Collapse
Affiliation(s)
- Zijian Fu
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Zhenbiao Zhang
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Mingyue Chu
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Naimeng Kan
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Yazhong Xiao
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China
| | - Hui Peng
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, Anhui, PR China.
| |
Collapse
|
4
|
Rehman S, Yang YS, Patria RD, Zulfiqar T, Khanzada NK, Khan RJ, Lin CSK, Lee DJ, Leu SY. Substrate-related factors and kinetic studies of Carbohydrate-Rich food wastes on enzymatic saccharification. BIORESOURCE TECHNOLOGY 2023; 390:129858. [PMID: 37863332 DOI: 10.1016/j.biortech.2023.129858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Food waste biorefinery is a sustainable approach to producing green chemicals, however the essential substrate-related factors hindering the efficacy of enzymatic hydrolysis have never been clarified. This study explored the key rate-limiting parameters and mechanisms of carbohydrate-rich food after different cooking and storing methods, i.e., impacts of compositions, structural diversities, and hornification. Shake-flask enzymatic kinetics determined the optimal dosages (0.5 wt% glucoamylase, 3 wt% cellulase) for food waste hydrolysis. First order kinetics and simulation results determined that reaction coefficient (K) of cooked starchy food was ∼ 3.63 h-1 (92 % amylum digestibility) within 2 h, while those for cooked cellulosic vegetables were 0.25-0.5 h-1 after 12 h of hydrolysis. Drying and frying reduced ∼ 71-89 % hydrolysis rates for rice, while hydrothermal pretreatment increased the hydrolysis rate by 82 % on vegetable wastes. This study provided insights into advanced control strategy and reduced the operational costs by optimized enzyme doses for food waste valorization.
Collapse
Affiliation(s)
- Shazia Rehman
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yvette Shihui Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Raffel Dharma Patria
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Talha Zulfiqar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Rabia Jalil Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
5
|
Sidar A, Voshol GP, Vijgenboom E, Punt PJ. Novel Design of an α-Amylase with an N-Terminal CBM20 in Aspergillus niger Improves Binding and Processing of a Broad Range of Starches. Molecules 2023; 28:5033. [PMID: 37446690 DOI: 10.3390/molecules28135033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In the starch processing industry including the food and pharmaceutical industries, α-amylase is an important enzyme that hydrolyses the α-1,4 glycosidic bonds in starch, producing shorter maltooligosaccharides. In plants, starch molecules are organised in granules that are very compact and rigid. The level of starch granule rigidity affects resistance towards enzymatic hydrolysis, resulting in inefficient starch degradation by industrially available α-amylases. In an approach to enhance starch hydrolysis, the domain architecture of a Glycoside Hydrolase (GH) family 13 α-amylase from Aspergillus niger was engineered. In all fungal GH13 α-amylases that carry a carbohydrate binding domain (CBM), these modules are of the CBM20 family and are located at the C-terminus of the α-amylase domain. To explore the role of the domain order, a new GH13 gene encoding an N-terminal CBM20 domain was designed and found to be fully functional. The starch binding capacity and enzymatic activity of N-terminal CBM20 α-amylase was found to be superior to that of native GH13 without CBM20. Based on the kinetic parameters, the engineered N-terminal CBM20 variant displayed surpassing activity rates compared to the C-terminal CBM20 version for the degradation on a wide range of starches, including the more resistant raw potato starch for which it exhibits a two-fold higher Vmax underscoring the potential of domain engineering for these carbohydrate active enzymes.
Collapse
Affiliation(s)
- Andika Sidar
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
- Department of Food and Agricultural Product Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Gerben P Voshol
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
- GenomeScan, 2333 BZ Leiden, The Netherlands
| | - Erik Vijgenboom
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Peter J Punt
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
- Ginkgo Bioworks, 3704 HE Zeist, The Netherlands
| |
Collapse
|
6
|
Boukid F, Ganeshan S, Wang Y, Tülbek MÇ, Nickerson MT. Bioengineered Enzymes and Precision Fermentation in the Food Industry. Int J Mol Sci 2023; 24:10156. [PMID: 37373305 DOI: 10.3390/ijms241210156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Enzymes have been used in the food processing industry for many years. However, the use of native enzymes is not conducive to high activity, efficiency, range of substrates, and adaptability to harsh food processing conditions. The advent of enzyme engineering approaches such as rational design, directed evolution, and semi-rational design provided much-needed impetus for tailor-made enzymes with improved or novel catalytic properties. Production of designer enzymes became further refined with the emergence of synthetic biology and gene editing techniques and a plethora of other tools such as artificial intelligence, and computational and bioinformatics analyses which have paved the way for what is referred to as precision fermentation for the production of these designer enzymes more efficiently. With all the technologies available, the bottleneck is now in the scale-up production of these enzymes. There is generally a lack of accessibility thereof of large-scale capabilities and know-how. This review is aimed at highlighting these various enzyme-engineering strategies and the associated scale-up challenges, including safety concerns surrounding genetically modified microorganisms and the use of cell-free systems to circumvent this issue. The use of solid-state fermentation (SSF) is also addressed as a potentially low-cost production system, amenable to customization and employing inexpensive feedstocks as substrate.
Collapse
Affiliation(s)
- Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | | | - Yingxin Wang
- Saskatchewan Food Industry Development Centre, Saskatoon, SK S7M 5V1, Canada
| | | | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
7
|
Li Y, Hu Q, Zhang L, Xiang Z, Ma Q. Enhancement of Growth and Synthesis of Extracellular Enzymes of Morchella sextelata Induced by Co-culturing with Trichoderma. Curr Microbiol 2023; 80:235. [PMID: 37278966 DOI: 10.1007/s00284-023-03347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Trichoderma is a genus of common filamentous fungi that display a various range of lifestyles and interactions with other fungi. The interaction of Trichoderma with Morchella sextelata was explored in this study. Trichoderma sp. T-002 was isolated from a wild fruiting body of Morchella sextelata M-001 and identified as a closely related species of Trichoderma songyi based on morphological chracteristics and phylogenetic analysis of translation elongation factor1-alpha and inter transcribed spacer of rDNA. Further, we focussed on the influence of dry mycelia of T-002 on the growth and synthesis of extracellular enzymes of M-001. Among different treatments, M-001 showed the highest growth of mycelia with an optimal supplement of 0.33 g/100 mL of T-002. Activities of extracellular enzymes of M-001 were enhanced significantly by the optimal supplement treatment. Overall, T-002, a unique Trichoderma species, had a positive effect on mycelial growth and synthesis of extracellular enzymes of M-001.
Collapse
Affiliation(s)
- Yinghao Li
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Qin Hu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Liqiu Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Zhengyu Xiang
- Hubei Shengfeng Pharmacy Co. Ltd., Enshi, 445000, China
| | - Qiong Ma
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
8
|
Functional Characterization of Recombinant Raw Starch Degrading α-Amylase from Roseateles terrae HL11 and Its Application on Cassava Pulp Saccharification. Catalysts 2022. [DOI: 10.3390/catal12060647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exploring new raw starch-hydrolyzing α-amylases and understanding their biochemical characteristics are important for the utilization of starch-rich materials in bio-industry. In this work, the biochemical characteristics of a novel raw starch-degrading α-amylase (HL11 Amy) from Roseateles terrae HL11 was firstly reported. Evolutionary analysis revealed that HL11Amy was classified into glycoside hydrolase family 13 subfamily 32 (GH13_32). It contains four protein domains consisting of domain A, domain B, domain C and carbohydrate-binding module 20 (CMB20). The enzyme optimally worked at 50 °C, pH 4.0 with a specific activity of 6270 U/mg protein and 1030 raw starch-degrading (RSD) U/mg protein against soluble starch. Remarkably, HL11Amy exhibited activity toward both raw and gelatinized forms of various substrates, with the highest catalytic efficiency (kcat/Km) on starch from rice, followed by potato and cassava, respectively. HL11Amy effectively hydrolyzed cassava pulp (CP) hydrolysis, with a reducing sugar yield of 736 and 183 mg/g starch from gelatinized and raw CP, equivalent to 72% and 18% conversion based on starch content in the substrate, respectively. These demonstrated that HL11Amy represents a promising raw starch-degrading enzyme with potential applications in starch modification and cassava pulp saccharification.
Collapse
|
9
|
Chen Z, Wang L, Shen Y, Hu D, Zhou L, Lu F, Li M. Improving Thermostability of Chimeric Enzymes Generated by Domain Shuffling Between Two Different Original Glucoamylases. Front Bioeng Biotechnol 2022; 10:881421. [PMID: 35449593 PMCID: PMC9017332 DOI: 10.3389/fbioe.2022.881421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
In order to improve enzymatic properties of glucoamylases, six recombinant genes GA1–GA6 were created by domain shuffling of glucoamylase genes GAA1 from Aspergillus niger Ld418AI and GATE from Talaromyces emersonii Ld418 TE using overlap extension PCR and were expressed in Saccharomyces cerevisiae W303-1B; only activities of GA1 and GA2 in the fermentation broth were higher than those of GAA1 but less than those of GATE. Further research results of GA1 and GA2 indicated that chimeric glucoamylases GA1 and GA2 revealed increased thermostability compared with GAA1 and GATE, although with a slight change in the activity and optimal temperature. However, GA1 had almost the same catalytic efficiency as GATE, whereas the catalytic efficiency of GA2 was slightly less than that of GATE, but still higher than that of GAA1. The structural analysis showed that the change of enzymatic properties could be caused by the increased and extended α-helix and β-sheet, which change the secondary and tertiary structures of chimeric glucoamylases. These results demonstrated that domain shuffling was feasible to generate a chimeric enzyme with novel properties.
Collapse
Affiliation(s)
- Zhongxiu Chen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Longbin Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dunji Hu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Liying Zhou
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
- *Correspondence: Fuping Lu, ; Ming Li,
| | - Ming Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
- *Correspondence: Fuping Lu, ; Ming Li,
| |
Collapse
|
10
|
Zhang L, Zhong L, Wang J, Zhao Y, Zhang Y, Zheng Y, Dong W, Ye X, Huang Y, Li Z, Cui Z. Efficient hydrolysis of raw starch by a maltohexaose-forming α-amylase from Corallococcus sp. EGB. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Nwagu TN, Aoyagi H, Okolo B, Moneke A, Yoshida S. Citraconylation and maleylation on the catalytic and thermodynamic properties of raw starch saccharifying amylase from Aspergillus carbonarius. Heliyon 2020; 6:e04351. [PMID: 32671262 PMCID: PMC7339066 DOI: 10.1016/j.heliyon.2020.e04351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023] Open
Abstract
Amylase capable of raw starch digestion presents a cheap and easier means of reducing sugar generation from various starch sources. Unfortunately, its potential for use in numerous industrial processes is hindered by poor stability. In this work, chemical modification by acylation using citraconic anhydride (CA) and maleic anhydride (MA) was used to stabilize the raw starch saccharifying amylase from A. carbonarius. The effect of the anhydrides on the pH and thermal stability of the free amylase was investigated. Enzyme kinetics and thermodynamic studies of the free and modified amylase were also carried out. Blue shifts in fluorescent spectra were observed after modification with both anhydrides. Citraconylation led to increased affinity of the enzyme for raw potato starch, unlike maleylation. The activation energy (kJ mol−1) for enzyme inactivation was increased by 94.8% after modification with CA while only 17.9% increase was noted after modification with MA. Acylation led to an increase in Gibb's free energy and enthalpy while a reduction in entropy was observed. At 80 °C the half-life (h) was 5.92, 11.18 and 14.74 for free, MA and CA enzyme samples, respectively. These findings have potential value in all industries interested in starch conversion to sugars.
Collapse
Affiliation(s)
- Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nigeria
| | - Hideki Aoyagi
- Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Bartholomew Okolo
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nigeria
| | - Anene Moneke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nigeria
| | - Shigeki Yoshida
- Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| |
Collapse
|
12
|
Peng H, Zhai L, Xu S, Xu P, He C, Xiao Y, Gao Y. Efficient Hydrolysis of Raw Microalgae Starch by an α-Amylase (AmyP) of Glycoside Hydrolase Subfamily GH13_37. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12748-12755. [PMID: 30441891 DOI: 10.1021/acs.jafc.8b03524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microalgae starch is receiving increasing attention as a renewable feedstock for biofuel production. Raw microalgae starch from Tetraselmis subcordiformis was proven to be very efficiently hydrolyzed by an α-amylase (AmyP) of glycoside hydrolase subfamily GH13_37 below the temperature of gelatinization (40 °C). The hydrolysis degree reached 74.4 ± 2.2% for 4% raw microalgae starch and 53.2 ± 1.7% for 8% raw microalgae starch after only 2 h. The hydrolysis efficiency was significantly stimulated by calcium ions. The enzyme catalysis of AmyP and its mutants (Q306A and E347A) suggested that calcium ions contributed to the hydrolysis of cyclic structures in raw microalgae starch by a distinctive calcium-binding site Ca2 of AmyP. The study explored raw microalgae starch as a new resource for cold enzymatic hydrolysis and extended our knowledge on the function of calcium in amylolytic enzyme.
Collapse
Affiliation(s)
- Hui Peng
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Lu Zhai
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Suo Xu
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Peng Xu
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Yazhong Xiao
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Yi Gao
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| |
Collapse
|