1
|
Abdul Rahim MAH, Samsurrijal SF, Abdullah AAA, Mohd Noor SNF. Development and physiochemical assessment of graphene-bioactive glass-P(3HB- co-4HB) composite scaffold as prospect biomaterial for wound healing. Biomed Mater 2024; 19:045040. [PMID: 38857599 DOI: 10.1088/1748-605x/ad5632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
The clinical management of wounds presents a considerable challenge because dressing selection must prioritise the provision of appropriate barrier and the healing properties, consider patient's compliance factors such as comfort, functionality and practicality. This study primarily aimed to develop a composite scaffold patch for potential application in wound healing. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a biopolymer that originated from bacteria. It is well-recognised owing to its distinctive mechanical and physical characteristics suitable for biomedical applications. Graphene (G) and bioactive glass (BG) are biocompatible towards humans, and enhanced properties are achievable by adding biopolymer. In this study, composite scaffolds were developed by combining P(3HB-co-4HB) at a distinct proportion of 4HB monomer reinforced with G (3.0 wt.%) and BG (2.5 wt.%) by using solvent casting, resulting in two types of composite scaffolds: P(3HB-co-25%4HB)/G/BG and P(3HB-co-37%4HB)/G/BG. A successful composite scaffold as a unified structure was achieved based on chemical assessments of organic and inorganic elements within the composites. The pure polymer displayed a smooth surface, and the BG and G addition into the composite scaffolds increased surface roughness, forming irregular pores and protuberances. The wettability and hydrophilicity of the composites significantly improved up to 40% in terms of water uptake. An increment in crystallisation temperature diminished the flexibility of the composite's scaffolds. Evaluation of Presto Blue biocompatibility demonstrated nontoxic behaviour with a dosage of less than 25.00 mg ml-1of composite scaffold-conditioned media. The L929 fibroblast cells displayed excellent adhesion to both types of composite scaffolds, as evidenced by the increased percentage of cell viability observed throughout 14 d of exposure. These findings demonstrate the importance of optimising each component within the composite scaffolds and their interrelation, paving the way for excellent material properties and enhancing the potential for wound healing applications.
Collapse
Affiliation(s)
| | - Siti Fatimah Samsurrijal
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | | | - Siti Noor Fazliah Mohd Noor
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Grzesiak J, Rogala MM, Gawor J, Kouřilová X, Obruča S. Polyhydroxyalkanoate involvement in stress-survival of two psychrophilic bacterial strains from the High Arctic. Appl Microbiol Biotechnol 2024; 108:273. [PMID: 38520566 PMCID: PMC10960890 DOI: 10.1007/s00253-024-13092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
An ever-growing body of literature evidences the protective role of polyhydroxyalkanoates (PHAs) against a plethora of mostly physical stressors in prokaryotic cells. To date, most of the research done involved bacterial strains isolated from habitats not considered to be life-challenging or extremely impacted by abiotic environmental factors. Polar region microorganisms experience a multitude of damaging factors in combinations rarely seen in other of Earth's environments. Therefore, the main objective of this investigation was to examine the role of PHAs in the adaptation of psychrophilic, Arctic-derived bacteria to stress conditions. Arctic PHA producers: Acidovorax sp. A1169 and Collimonas sp. A2191, were chosen and their genes involved in PHB metabolism were deactivated making them unable to accumulate PHAs (ΔphaC) or to utilize them (Δi-phaZ) as a carbon source. Varying stressors were applied to the wild-type and the prepared mutant strains and their survival rates were assessed based on CFU count. Wild-type strains with a functional PHA metabolism were best suited to survive the freeze-thaw cycle - a common feature of polar region habitats. However, the majority of stresses were best survived by the ΔphaC mutants, suggesting that the biochemical imbalance caused by the lack of PHAs induced a permanent cell-wide stress response thus causing them to better withstand the stressor application. Δi-phaZ mutants were superior in surviving UV irradiation, hinting that PHA granule presence in bacterial cells is beneficial despite it being biologically inaccessible. Obtained data suggests that the ability to metabolize PHA although important for survival, probably is not the most crucial mechanism in the stress-resistance strategies arsenal of cold-loving bacteria. KEY POINTS: • PHA metabolism helps psychrophiles survive freezing • PHA-lacking psychrophile mutants cope better with oxidative and heat stresses • PHA granule presence enhances the UV resistance of psychrophiles.
Collapse
Affiliation(s)
- Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Małgorzata Marta Rogala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
3
|
Mohd Mokhtar NAI, Ashari SE, Mohd Zawawi R. Optimization of a lipase/reduced graphene oxide/metal-organic framework electrode using a central composite design-response surface methodology approach. RSC Adv 2023; 13:13493-13504. [PMID: 37152575 PMCID: PMC10155190 DOI: 10.1039/d3ra01060k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Lipase has been gaining attention as the recognition element in electrochemical biosensors. Lipase immobilization is important to maintain its stability while providing excellent conductivity. In this study, a lipase electrochemical biosensor immobilized on a copper-centred metal-organic framework integrated with reduced graphene oxide (lipase/rGO/Cu-MOF) was synthesized by a facile method at room temperature. Response surface methodology (RSM) via central composite design (CCD) was used to optimize the synthesis parameters, which are rGO weight, ultrasonication time, and lipase concentration, to maximize the current response for the detection of p-nitrophenyl acetate (p-NPA). The results of the analysis of variance (ANOVA) showed that all three parameters were significant, while the interaction between the ultrasonication time and lipase concentration was the only significant interaction with a p-value of less than 0.05. The optimized electrode with parameters of 1 mg of rGO, 30 min ultrasonication time, and 30 mg mL-1 lipase exhibited the highest current response of 116.93 μA using cyclic voltammetry (CV) and had a residual standard error (RSE) of less than 2% in validation, indicating that the model is suitable to be used. It was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR), where the integration of the composite was observed. Immobilization using ultrasonication altered the lipase's secondary structure, but reduced its unorderly coils. The electrochemical and thermal analysis showed that the combination of Cu-MOF with rGO enhanced the electrochemical conductivity and thermostability.
Collapse
Affiliation(s)
| | - Siti Efliza Ashari
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| | - Ruzniza Mohd Zawawi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 UPM, Serdang Selangor Malaysia
| |
Collapse
|
4
|
Pei R, Tarek-Bahgat N, Van Loosdrecht MCM, Kleerebezem R, Werker AG. Influence of environmental conditions on accumulated polyhydroxybutyrate in municipal activated sludge. WATER RESEARCH 2023; 232:119653. [PMID: 36758350 DOI: 10.1016/j.watres.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) was accumulated in full-scale municipal waste activated sludge at pilot scale. After accumulation, the fate of the PHB-rich biomass was evaluated over two weeks as a function of initial pH (5.5, 7.0 and 10), and incubation temperature (25, 37 and 55°C), with or without aeration. PHB became consumed under aerobic conditions as expected with first order rate constants in the range of 0.19 to 0.55 d-1. Under anaerobic conditions, up to 63 percent of the PHB became consumed within the first day (initial pH 7, 55°C). Subsequently, with continued anaerobic conditions, the polymer content remained stable in the biomass. Degradation rates were lower for acidic anaerobic incubation conditions at a lower temperature (25°C). Polymer thermal properties were measured in the dried PHB-rich biomass and for the polymer recovered by solvent extraction using dimethyl carbonate. PHB quality changes in dried biomass, indicated by differences in polymer melt enthalpy, correlated to differences in the extent of PHB extractability. Differences in the expressed PHB-in-biomass melt enthalpy that correlated to the polymer extractability suggested that yields of polymer recovery by extraction can be influenced by the state or quality of the polymer generated during downstream processing. Different post-accumulation process biomass management environments were found to influence the polymer quality and can also influence the extraction of non-polymer biomass. An acidic post-accumulation environment resulted in higher melt enthalpies in the biomass and, consequently, higher extraction efficiencies. Overall, acidic environmental conditions were found to be favourable for preserving both quantity and quality after PHB accumulation in activated sludge.
Collapse
Affiliation(s)
- R Pei
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| | - N Tarek-Bahgat
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - M C M Van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - R Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - A G Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| |
Collapse
|
5
|
Rehakova V, Pernicova I, Kourilova X, Sedlacek P, Musilova J, Sedlar K, Koller M, Kalina M, Obruca S. Biosynthesis of versatile PHA copolymers by thermophilic members of the genus Aneurinibacillus. Int J Biol Macromol 2023; 225:1588-1598. [PMID: 36435467 DOI: 10.1016/j.ijbiomac.2022.11.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Thermophilic members of the genus Aneurinibacillus constitute a remarkable group of microorganisms that exhibit extraordinary flexibility in terms of polyhydroxyalkanoates (PHA) synthesis. In this study, we demonstrate that these Gram-positive bacteria are capable of the utilization of selected lactones, namely, γ-valerolactone (GVL), γ-hexalactone (GHL), and δ-valerolactone (DVL) as the structural precursors of related PHA monomers. In the presence of GVL, a PHA copolymer consisting of 3-hydroxybutyrate, 3-hydroxyvalerate, and also 4-hydroxyvalerate was synthesized, with a 4 HV fraction as high as 53.1 mol%. Similarly, the application of GHL resulted in the synthesis of PHA copolymer containing 4-hydroxyhexanaote (4HHx) (4HHx fraction reached up to 11.5 mol%) and DVL was incorporated into PHA in form of 5-hydroxyvalerate (5 HV) (maximal 5 HV content was 44.2 mol%). The produced materials were characterized by thermoanalytical and spectroscopic methods; the results confirmed extremely appealing material properties of produced copolymers. Further, due to their unique metabolic features and capability of incorporating various PHA monomers into the PHA chain, thermophilic Aneurinibacillus spp. can be considered not only promising chassis for PHA production but also potential donors of PHA-relevant genes to improve PHA production in other thermophiles by using approaches of synthetic biology.
Collapse
Affiliation(s)
- Veronika Rehakova
- Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Xenie Kourilova
- Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Petr Sedlacek
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Martin Koller
- Research Management and Service, c/o Institute of Chemistry, NAWI Graz, University of Graz, Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Graz, Austria
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Stanislav Obruca
- Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
6
|
Estévez-Alonso Á, Altamira-Algarra B, Arnau-Segarra C, van Loosdrecht MCM, Kleerebezem R, Werker A. Process conditions affect properties and outcomes of polyhydroxyalkanoate accumulation in municipal activated sludge. BIORESOURCE TECHNOLOGY 2022; 364:128035. [PMID: 36182016 DOI: 10.1016/j.biortech.2022.128035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The developments of mixed culture polyhydroxyalkanoate production has been directed to maximize the biomass PHA content with limited attention to polymer quality. Direct comparison of PHA accumulation literature is challenging, and even regularly contradicting in reported results, due to underlying differences that are not well expressed. A study was undertaken to systematically compare the commonly reported process conditions for PHA accumulation by full-scale municipal activated sludge. A biomass acclimation step combined with a pulse-wise feeding strategy resulted in maximum average PHA contents and product yields. pH control and active nitrification did not result in observable effects on the PHA productivity. Under these conditions a high molecular weight polymer (1536 ± 221 kDa) can be produced. Polymer extraction recoveries were influenced by the PHA molecular weight. A standard protocol for an activated sludge PHA accumulation test including downstream processing and standardized extraction has been developed and is available as supplementary material.
Collapse
Affiliation(s)
- Ángel Estévez-Alonso
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands.
| | - Beatriz Altamira-Algarra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - César Arnau-Segarra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alan Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| |
Collapse
|
7
|
The role of polyhydroxyalkanoates in adaptation of Cupriavidus necator to osmotic pressure and high concentration of copper ions. Int J Biol Macromol 2022; 206:977-989. [PMID: 35314264 DOI: 10.1016/j.ijbiomac.2022.03.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 01/14/2023]
Abstract
Polyhydroxyalkanoates (PHA) are abundant microbial polyesters accumulated in the form of intracellular granules by numerous prokaryotes primarily as storage of carbon and energy. Apart from their storage function, the presence of PHA also enhances the robustness of the microbial cells against various stressors. In this work, we investigated the role of PHA in Cupriavidus necator, a model organism concerning PHA metabolism, for adaptation to osmotic pressure and copper ions. In long-term laboratory evolution experiments, the bacterial culture was cultivated in presence of elevated doses of sodium chloride or copper ions (incubations lasted 78 passages for Cu2+ and 68 passages for NaCl) and the evolved strains were compared with the wild-type strain in terms of growth and PHA production capacity, cell morphology (investigated by various electron microscopy techniques), activities of selected enzymes involved in PHA metabolism and other crucial metabolic pathways, the chemical composition of bacterial biomass (determined by infrared and Raman spectroscopy) and also considering robustness against various stressors. The results confirmed the important role of PHA metabolism for adaptation to both tested stressors.
Collapse
|
8
|
Novackova I, Kourilova X, Mrazova K, Sedlacek P, Kalina M, Krzyzanek V, Koller M, Obruca S. Combination of Hypotonic Lysis and Application of Detergent for Isolation of Polyhydroxyalkanoates from Extremophiles. Polymers (Basel) 2022; 14:polym14091761. [PMID: 35566928 PMCID: PMC9104112 DOI: 10.3390/polym14091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Production of polyhydroxyalkanoates (PHA), microbial biopolyesters, employing extremophilic microorganisms is a very promising concept relying on robustness of such organisms against microbial contamination, which provides numerous economic and technological benefits. In this work, we took advantage of the natural susceptibility of halophilic and thermophilic PHA producers to hypotonic lysis and we developed a simple and robust approach enabling effective isolation of PHA materials from microbial cells. The method is based on the exposition of microbial cells to hypotonic conditions induced by the diluted solution of sodium dodecyl sulfate (SDS) at elevated temperatures. Such conditions lead to disruption of the cells and release of PHA granules. Moreover, SDS, apart from its cell-disruptive function, also solubilizes hydrophobic components, which would otherwise contaminate PHA materials. The purity of obtained materials, as well as the yields of recovery, reach high values (values of purity higher than 99 wt.%, yields close to 1). Furthermore, we also focused on the removal of SDS from wastewater. The simple, inexpensive, and safe technique is based on the precipitation of SDS in the presence of KCl. The precipitate can be simply removed by decantation or centrifugation. Moreover, there is also the possibility to regenerate the SDS, which would substantially improve the economic feasibility of the process.
Collapse
Affiliation(s)
- Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Katerina Mrazova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Martin Koller
- Research Management and Service, c/o Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria;
- ARENA—Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
- Correspondence: ; Tel.: +420-541-149-354
| |
Collapse
|
9
|
Liu L, Chu X, Tian C, Xia M, Zhang L, Jiang J, Gui S. Chemo Proling and Simultaneous Analysis of Different Combinations of Sinomenii Caulis and Ramulus Cinnamomi Using UHPLC-Q-TOF-MS, GC-MS and HPLC Methods. J Chromatogr Sci 2021; 59:606-617. [PMID: 33969409 DOI: 10.1093/chromsci/bmab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Sinomenii Caulis (QingFengTeng) and Ramulus Cinnamomi (GuiZhi) are traditional Chinese drugs that have been used for anti-inflammation. In this study, the team plans to find out the material basis of a Chinese herb combination composed of the two herbs with different ratios. METHODS The extracts of the herbal compound with various ratios obtained from ethanol extraction were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry to identify the basic chemical compounds. Simultaneously, the contents of the eight main components (sinomenine, magnoflorine, laurifoline, dauricine, coumarin, cinnamyl alcohol, cinnamic acid and cinnamaldehyde) from herb formula were determined by gradient elution by high-performance liquid chromatography. Furthermore, the content of sinomenine and cinnamaldehyde were determined by isocratic elution, respectively. RESULTS Eighteen compounds in the herb formula were identified by UHPLC-Q-TOF-MS. The components in the GuiZhi are mostly volatile oils and the kinds of compounds isolated from the formula in the ratio of 4:1 were the most. Wherein eight compounds were identified as the main detection targets in the content determination. CONCLUSION The extraction rate of sinomenine in QingFengTeng was related to the proportion of GuiZhi in the drug pairs. Synchronously, the addition of sinomenine in different proportions also had some influence on the extraction of cinnamaldehyde in GuiZhi. Furthermore, the series of methods was successfully applied to the simultaneous determination of chemical compounds in different samples of QingFengTeng-GuiZhi decoction.
Collapse
Affiliation(s)
- Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.,School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jianqin Jiang
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.,Cellular and molecular biology Center, China Pharmaceutical University, Nanjing 211198, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
10
|
Tugarova AV, Dyatlova YA, Kenzhegulov OA, Kamnev AA. Poly-3-hydroxybutyrate synthesis by different Azospirillum brasilense strains under varying nitrogen deficiency: A comparative in-situ FTIR spectroscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119458. [PMID: 33601223 DOI: 10.1016/j.saa.2021.119458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Monitoring of poly-3-hydroxybutyrate accumulation and changes in its relative contents in biomass of the plant-growth-promoting bacteria Azospirillum brasilense (strains Sp7, Cd and Sp245) was performed during aerobic cultivation for 1 to 8 days at various initial concentrations of bound nitrogen (0.1 to 0.5 g∙L-1 NH4Cl) in the culture medium using in-situ transmission FTIR spectroscopy. A methodology has been proposed based on calculating band areas in FTIR spectra (instead of band intensities commonly used earlier) for determining relative contents of PHB in dry bacterial biomass, using the ester ν(C=O) band as a PHB marker (in the region 1750-1720 cm-1) and amide II band of cellular proteins (at ca. 1540 cm-1). Differences in PHB accumulation levels and their changes in the course of cultivation under various trophic stress for the three strains are discussed in relation to their different ecological niches which they occupy in the rhizosphere.
Collapse
Affiliation(s)
- Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Yulia A Dyatlova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Odissey A Kenzhegulov
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| |
Collapse
|
11
|
Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. BIORESOURCE TECHNOLOGY 2021; 326:124767. [PMID: 33540213 DOI: 10.1016/j.biortech.2021.124767] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters which, apart from their primary storage role, enhance the stress robustness of PHA accumulating cells against various stressors. PHA also represent interesting alternatives to petrochemical polymers, which can be produced from renewable resources employing approaches of microbial biotechnology. During biotechnological processes, bacterial cells are exposed to various stressor factors such as fluctuations in temperature, osmolarity, pH-value, elevated pressure or the presence of microbial inhibitors. This review summarizes how PHA helps microbial cells to cope with biotechnological process-relevant stressors and, vice versa, how various stress conditions can affect PHA production processes. The review suggests a fundamentally new strategy for PHA production: the fine-tuned exposure to selected stressors, which might be used to boost PHA production and even to tailor their structure.
Collapse
Affiliation(s)
- Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| |
Collapse
|
12
|
Kamnev AA, Dyatlova YA, Kenzhegulov OA, Vladimirova AA, Mamchenkova PV, Tugarova AV. Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects. Molecules 2021; 26:1146. [PMID: 33669948 PMCID: PMC7924863 DOI: 10.3390/molecules26041146] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
To demonstrate the importance of sample preparation used in Fourier transform infrared (FTIR) spectroscopy of microbiological materials, bacterial biomass samples with and without grinding and after different drying periods (1.5-23 h at 45 °C), as well as biogenic selenium nanoparticles (SeNPs; without washing and after one to three washing steps) were comparatively studied by transmission FTIR spectroscopy. For preparing bacterial biomass samples, Azospirillum brasilense Sp7 and A. baldaniorum Sp245 (earlier known as A. brasilense Sp245) were used. The SeNPs were obtained using A. brasilense Sp7 incubated with selenite. Grinding of the biomass samples was shown to result in slight downshifting of the bands related to cellular poly-3-hydroxybutyrate (PHB) present in the samples in small amounts (under ~10%), reflecting its partial crystallisation. Drying for 23 h was shown to give more reproducible FTIR spectra of bacterial samples. SeNPs were shown to contain capping layers of proteins, polysaccharides and lipids. The as-prepared SeNPs contained significant amounts of carboxylated components in their bioorganic capping, which appeared to be weakly bound and were largely removed after washing. Spectroscopic characteristics and changes induced by various sample preparation steps are discussed with regard to optimising sample treatment procedures for FTIR spectroscopic analyses of microbiological specimens.
Collapse
Affiliation(s)
- Alexander A. Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia; (Y.A.D.); (O.A.K.); (A.A.V.); (P.V.M.); (A.V.T.)
| | | | | | | | | | | |
Collapse
|
13
|
Kourilova X, Pernicova I, Sedlar K, Musilova J, Sedlacek P, Kalina M, Koller M, Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. BIORESOURCE TECHNOLOGY 2020; 315:123885. [PMID: 32721829 DOI: 10.1016/j.biortech.2020.123885] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to investigate the thermophilic bacterium Schelegelella thermodepolymerans DSM 15344 in terms of its polyhydroxyalkanoates (PHA) biosynthesis capacity. The bacterium is capable of converting various sugars into PHA with the optimal growth temperature of 55 °C; therefore, the process of PHA biosynthesis could be robust against contamination. Surprisingly, the highest yield was gained on xylose. Results suggested that S. thermodepolymerans possess unique xylose metabolism since xylose is utilized preferentially with the highest consumption rate as compared to other sugars. In the genome of S. thermodepolymerans DSM 15344, a unique putative xyl operon consisting of genes responsible for xylose utilization and also for its transport was identified, which is a unique feature among PHA producers. The bacterium is capable of biosynthesis of copolymers containing 3-hydroxybutyrate and also 3-hydroxyvalerate subunits. Hence, S.thermodepolymerans seems to be promising candidate for PHA production from xylose rich substrates.
Collapse
Affiliation(s)
- Xenie Kourilova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno, Czech Republic
| | - Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno, Czech Republic
| | - Petr Sedlacek
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
14
|
Suzuki M, Tachibana Y, Kasuya KI. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym J 2020. [DOI: 10.1038/s41428-020-00396-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractApproximately 4.8–12.7 million tons of plastic waste has been estimated to be discharged into marine environments annually by wind and river currents. The Ellen MacArthur Foundation warns that the total weight of plastic waste in the oceans will exceed the total weight of fish in 2050 if the environmental runoff of plastic continues at the current rate. Hence, biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polyhydroxyalkanoates (PHAs) and poly(ε-caprolactone) (PCL) are particularly noteworthy because of their excellent marine biodegradability. In this review, the biosynthesis of PHA and cutin, a natural analog of PCL, and the biodegradation of PHA and PCL in carbon cycles in marine ecosystems are discussed. PHA is biosynthesized and biodegraded by various marine microbes in a wide range of marine environments, including coastal, shallow-water, and deep-sea environments. Marine cutin is biosynthesized by marine plants or obtained from terrestrial environments, and PCL and cutin are biodegraded by cutin hydrolytic enzyme-producing microbes in broad marine environments. Thus, biological carbon cycles for PHA and PCL exist in the marine environment, which would allow materials made of PHA and PCL to be quickly mineralized in marine environments.
Collapse
|
15
|
Sedlacek P, Pernicova I, Novackova I, Kourilova X, Kalina M, Kovalcik A, Koller M, Nebesarova J, Krzyzanek V, Hrubanova K, Masilko J, Slaninova E, Trudicova M, Obruca S. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers-2. Material Study on the Produced Copolymers. Polymers (Basel) 2020; 12:polym12061298. [PMID: 32517027 PMCID: PMC7362046 DOI: 10.3390/polym12061298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/29/2022] Open
Abstract
Aneurinibacillus sp. H1 is a promising, moderately thermophilic, novel Gram-positive bacterium capable of the biosynthesis of polyhydroxyalkanoates (PHA) with tunable monomer composition. In particular, the strain is able to synthesize copolymers of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate (3HV) with remarkably high 4HB and 3HV fractions. In this study we performed an in-depth material analysis of PHA polymers produced by Aneurinibacillus sp. H1 in order to describe how the monomer composition affects fundamental structural and physicochemical parameters of the materials in the form of solvent-casted films. Results of infrared spectroscopy, X-ray diffractometry and thermal analysis clearly show that controlling the monomer composition enables optimization of PHA crystallinity both qualitatively (the type of the crystalline lattice) and quantitatively (the overall degree of crystallinity). Furthermore, resistance of the films against thermal and/or enzymatic degradation can also be manipulated by the monomer composition. Results of this study hence confirm Aneurinibacillus sp. H1 as an auspicious candidate for thermophilic production of PHA polymers with material properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.
Collapse
Affiliation(s)
- Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Iva Pernicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Adriana Kovalcik
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria;
- ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Jana Nebesarova
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (V.K.); (K.H.)
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (V.K.); (K.H.)
| | - Jiri Masilko
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Eva Slaninova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Monika Trudicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
- Correspondence: ; Tel.: +420-541-149-354
| |
Collapse
|
16
|
Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 2020; 104:4795-4810. [PMID: 32303817 DOI: 10.1007/s00253-020-10568-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure. It seems that protective mechanisms of PHA granules are associated with their extraordinary architecture and biophysical properties as well as with the complex and deeply interconnected nature of PHA metabolism. Therefore, this review aims at describing novel and unexpected properties of PHA granules with respect to their contribution to stress tolerance of various prokaryotes including common mesophilic heterotrophic bacteria, but also extremophiles or photo-autotrophic cyanobacteria. KEY POINTS: • PHA granules present in bacterial cells reveal unique properties and functions. • PHA enhances stress robustness of bacterial cells.
Collapse
|
17
|
Tarazona NA, Machatschek R, Lendlein A. Unraveling the Interplay between Abiotic Hydrolytic Degradation and Crystallization of Bacterial Polyesters Comprising Short and Medium Side-Chain-Length Polyhydroxyalkanoates. Biomacromolecules 2020; 21:761-771. [PMID: 31841314 DOI: 10.1021/acs.biomac.9b01458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyhydroxyalkanoates (PHAs) have attracted attention as degradable (co)polyesters which can be produced by microorganisms with variations in the side chain. This structural variation influences not only the thermomechanical properties of the material but also its degradation behavior. Here, we used Langmuir monolayers at the air-water (A-W) interface as suitable models for evaluating the abiotic degradation of two PHAs with different side-chain lengths and crystallinity. By controlling the polymer state (semicrystalline, amorphous), the packing density, the pH, and the degradation mechanism, we could draw several significant conclusions. (i) The maximum degree of crystallinity for a PHA film to be efficiently degraded up to pH = 12.3 is 40%. (ii) PHA made of repeating units with shorter side-chain length are more easily hydrolyzed under alkaline conditions. The efficiency of alkaline hydrolysis decreased by about 65% when the polymer was 40% crystalline. (iii) In PHA films with a relatively high initial crystallinity, abiotic degradation initiated a chemi-crystallization phenomenon, detected as an increase in the storage modulus (E'). This could translate into an increase in brittleness and reduction in the material degradability. Finally, we demonstrate the stability of the measurement system for long-term experiments, which allows degradation conditions for polymers that could closely simulate real-time degradation.
Collapse
Affiliation(s)
- Natalia A Tarazona
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , 14513 Teltow , Germany
| | - Rainhard Machatschek
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , 14513 Teltow , Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , 14513 Teltow , Germany.,Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Strasse 24-25 , 14469 Potsdam , Germany
| |
Collapse
|
18
|
Application of osmotic challenge for enrichment of microbial consortia in polyhydroxyalkanoates producing thermophilic and thermotolerant bacteria and their subsequent isolation. Int J Biol Macromol 2020; 144:698-704. [DOI: 10.1016/j.ijbiomac.2019.12.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022]
|
19
|
Rao A, Haque S, El-Enshasy HA, Singh V, Mishra BN. RSM-GA Based Optimization of Bacterial PHA Production and In Silico Modulation of Citrate Synthase for Enhancing PHA Production. Biomolecules 2019; 9:biom9120872. [PMID: 31842491 PMCID: PMC6995514 DOI: 10.3390/biom9120872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022] Open
Abstract
The inexhaustible nature and biodegradability of bioplastics like polyhydroxyalkanoates (PHAs) make them suitable assets to replace synthetic plastics. The eventual fate of these eco-friendly and non-toxic bioplastics relies upon the endeavors towards satisfying cost and, in addition, execution necessity. In this study, we utilized and statistically optimized different food (kitchen-/agro-) waste as a sole carbon/nitrogen source for the production of PHA at a reduced cost, indicating a proficient waste administration procedure. Seven different types of kitchen-/agro-waste were used as unique carbon source and four different types of nitrogen source were used to study their impact on PHA production by Bacillus subtilis MTCC 144. Among four different studied production media, mineral salt medium (MSM) (biomass: 37.7 g/L; cell dry weight: 1.8 g/L; and PHA: 1.54 g/L) was found most suitable for PHA production. Further, carbon and nitrogen components of MSM were optimized using one-factor-at-a-time experiments, and found that watermelon rind (PHA = 12.97 g/L) and pulse peel (PHA = 13.5 g/L) were the most suitable carbon and nitrogen sources, respectively, in terms of PHA (78.60%) recovery. The concentrations of these factors (sources) were statistically optimized using response surface methodology coupled with the genetic algorithm approach. Additionally, in order to enhance microbial PHA production, the interaction of citrate synthase, a key enzyme in the TCA cycle, with different known inhibitors was studied using in silico molecular docking approach. The inhibition of citrate synthase induces the blockage of the tricarboxylic cycle (TCA), thereby increasing the concentration of acetyl-CoA that helps in enhanced PHA production. Molecular docking of citrate synthase with different inhibitors of PubChem database revealed that hesperidin (PubChem compound CID ID 10621), generally present in citrus fruits, is the most efficient inhibitor of the TCA cycle with the binding score of –11.4 and warrants experimental validation. Overall, this study provides an efficient food waste management approach by reducing the production cost and enhancing the production of PHA, thereby lessening our reliance on petroleum-based plastics.
Collapse
Affiliation(s)
- Apoorva Rao
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow 226021, Uttar Pradesh, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hesham A. El-Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Malaysia;
- School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Malaysia
- City of Scientific Research and Technological Applications, New Burg Al Arab 21934, Alexandria, Egypt
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow 226021, Uttar Pradesh, India;
- Correspondence: (V.S.); (B.N.M.); Tel.: +91-522-2361692 (V.S.); +91-522-2361631 (B.N.M.)
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow 226021, Uttar Pradesh, India;
- Correspondence: (V.S.); (B.N.M.); Tel.: +91-522-2361692 (V.S.); +91-522-2361631 (B.N.M.)
| |
Collapse
|
20
|
Novackova I, Kucera D, Porizka J, Pernicova I, Sedlacek P, Koller M, Kovalcik A, Obruca S. Adaptation of Cupriavidus necator to levulinic acid for enhanced production of P(3HB-co-3HV) copolyesters. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
A comparative study of degradation mechanisms of PHBV and PBSA under laboratory-scale composting conditions. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Kucera D, Novackova I, Pernicova I, Sedlacek P, Obruca S. Biotechnological Production of Poly(3-Hydroxybutyrate- co-4-Hydroxybutyrate- co-3-Hydroxyvalerate) Terpolymer by Cupriavidus sp. DSM 19379. Bioengineering (Basel) 2019; 6:bioengineering6030074. [PMID: 31455023 PMCID: PMC6783845 DOI: 10.3390/bioengineering6030074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
The terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 4-hydroxybutyrate (4HB) was produced employing Cupriavidus sp. DSM 19379. Growth in the presence of γ-butyrolactone, ε-caprolactone, 1,4-butanediol, and 1,6-hexanediol resulted in the synthesis of a polymer consisting of 3HB and 4HB monomers. Single and two-stage terpolymer production strategies were utilized to incorporate the 3HV subunit into the polymer structure. At the single-stage cultivation mode, γ-butyrolactone or 1,4-butanediol served as the primary substrate and propionic and valeric acid as the precursor of 3HV. In the two-stage production, glycerol was used in the growth phase, and precursors for the formation of the terpolymer in combination with the nitrogen limitation in the medium were used in the second phase. The aim of this work was to maximize the Polyhydroxyalkanoates (PHA) yields with a high proportion of 3HV and 4HB using different culture strategies. The obtained polymers contained 0–29 mol% of 3HV and 16–32 mol% of 4HB. Selected polymers were subjected to a material properties analysis such as differential scanning calorimetry (DSC), thermogravimetry, and size exclusion chromatography coupled with multi angle light scattering (SEC-MALS) for determination of the molecular weight. The number of polymers in the biomass, as well as the monomer composition of the polymer were determined by gas chromatography.
Collapse
Affiliation(s)
- Dan Kucera
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
- Material Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Iva Pernicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
- Material Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Petr Sedlacek
- Material Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
- Material Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
23
|
Enev V, Sedláček P, Jarábková S, Velcer T, Pekař M. ATR-FTIR spectroscopy and thermogravimetry characterization of water in polyelectrolyte-surfactant hydrogels. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|