1
|
Campos D, Cottet L, Santos C, Castillo A. Antifungal activity of Serratia plymuthica against the phytopathogenic fungus Alternariatenuissima. Microb Pathog 2024; 193:106750. [PMID: 38906491 DOI: 10.1016/j.micpath.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The antifungal activity of Serratia plymuthica CCGG2742, a bacterial strain isolated from grapes berries skin, against a phytopathogenic fungus isolated from blueberries was evaluated in vitro and in vivo. In order to characterize the wild fungal isolate, phylogenetic analysis using concatenated DNA sequences from the RPB2 and TEF1 genes and of the ITS region was performed, allowing the identification of the fungal isolate that was called Alternaria tenuissima CC17. Hyphae morphology, mycelium ultrastructure, conidia and reproductive structures were in agreement with the phylogenetic analysis. The antifungal activity of the S. plymuthica strain was dependent on the composition of the culture medium. The greatest inhibition of mycelial growth of A. tenuissima CC17 by S. plymuthica CCGG2742 was observed on YTS medium, which lacks of an easily assimilable carbon source. Fungal growth medium supplemented with 50 % of bacterial supernatant decreased the conidia germination of A. tenuissima CC17 up to 32 %. Preventive applications of S. plymuthica CCGG2742 to blueberries and tomato leaves at conidia:bacteria ratio of 1:100, protected in 77.8 ± 4.6 % and 98.2 ± 0.6 % to blueberries and tomato leaves from infection caused by A. tenuissima CC17, respectively. To the best of our knowledge, this is the first report on the antifungal activity of S. plymuthica against A. tenuissima, which could be used as a biological control agent of plant diseases caused by this fungal species. In addition, the results of this work could be a starting point to attribute the real importance of A. tenuissima as a pathogen of blueberries in Chile, which until now had been considered almost exclusively to A. alternata. Likewise, this research could be relevant to start developing highly effective strategies based on S. plymuthica CCGG2742 for the control of this important phytopathogenic fungus.
Collapse
Affiliation(s)
- Daniela Campos
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Biología, Chile
| | - Luis Cottet
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Biología, Chile
| | - Camila Santos
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Biología, Chile
| | - Antonio Castillo
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Biología, Chile.
| |
Collapse
|
2
|
Putri VRM, Jung MH, Lee JY, Kwak MH, Mariyes TC, Kerbs A, Wendisch VF, Kong HJ, Kim YO, Lee JH. Fermentative aminopyrrolnitrin production by metabolically engineered Corynebacterium glutamicum. Microb Cell Fact 2024; 23:147. [PMID: 38783320 PMCID: PMC11112847 DOI: 10.1186/s12934-024-02424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.
Collapse
Grants
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
Collapse
Affiliation(s)
| | - Min-Hee Jung
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea
| | - Ji-Young Lee
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea
| | - Mi-Hyang Kwak
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea
| | - Theavita Chatarina Mariyes
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea
| | - Anastasia Kerbs
- Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea.
| |
Collapse
|
3
|
Lee HG, Bok EY, Jung YH, Hur TY, Kim YO, Kong HJ, Kim DG, Kim YS, Oem JK. Antifungal activity of aminopyrrolnitrin against Trichophyton verrucosum in a guinea pig model of dermatophytosis. Mycoses 2024; 67:e13748. [PMID: 38783563 DOI: 10.1111/myc.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Dermatophytosis is a common and major public health concern worldwide. Despite the increasing availability of antifungal drugs, relapses and untreated cases of dermatophyte infections are reported. Therefore, novel antifungal agents are required. Aminopyrrolnitrin (APRN) shows promise for dermatophytosis treatment because of its antifungal activity. OBJECTIVES This study aimed to assess the antifungal properties of APRN against Trichophyton verrucosum (T. verrucosum), in both laboratory settings and a guinea pig model. METHODS The minimum inhibitory concentrations (MICs) of APRN and enilconazole against T. verrucosum were determined according to the CLSI M38 method. The skins of 16 male guinea pigs were infected with 1.0 × 108 conidia of T. verrucosum and the animals were grouped into sets of four: negative control group (NC) received normal saline; positive control group (PC) received 2 μg/mL of enilconazole; and APRN4 and APRN8 received 4 and 8 μg/mL of APRN, respectively. Clinical, mycological and histological efficacies were measured after 10 days. RESULTS The MIC90 of APRN and enilconazole against T. verrucosum was 4 and 2 μg/mL, respectively. The clinical scores of PC, APRN4, and APRN8 were significantly lower than those of NC. Clinical and mycological efficacies were higher for APRN8, APRN4 and PC. No fungi were observed in the skin tissues of APRN4 and APRN8, while fungi were observed in 50% of the PC. CONCLUSION APRN showed antifungal activity against T. verrucosum in vitro and in vivo and is a potential candidate for the treatment of dermatophytosis.
Collapse
Affiliation(s)
- Han Gyu Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
- Department of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Young-Sam Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Jae Ku Oem
- Department of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
4
|
Yang Y, Wang H, Tu J, Li Y, Guan H. Comprehensive genomic analysis of Burkholderia arboris PN-1 reveals its biocontrol potential against Fusarium solani-induced root rot in Panax notoginseng. Curr Genet 2024; 70:4. [PMID: 38555312 DOI: 10.1007/s00294-024-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.
Collapse
Affiliation(s)
- Yun Yang
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, Kunming, 650500, Yunnan, China
- Wenshan Academy of Agricultural Sciences, Wenshan, 663000, Yunnan, China
| | - Haoji Wang
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, Kunming, 650500, Yunnan, China
- Yunnan Provincial Renewable Energy Engineering Key Laboratory, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Jielei Tu
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, Kunming, 650500, Yunnan, China
- Yunnan Provincial Renewable Energy Engineering Key Laboratory, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Yan Li
- Yunnan Provincial Rural Energy Management Station, Kunming, 650233, Yunnan, China
| | - Huilin Guan
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, Kunming, 650500, Yunnan, China.
- Yunnan Provincial Renewable Energy Engineering Key Laboratory, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
5
|
Xiao S, Wang Z, Wang B, Hou B, Cheng J, Bai T, Zhang Y, Wang W, Yan L, Zhang J. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives. Front Microbiol 2023; 14:1099098. [PMID: 37032885 PMCID: PMC10076799 DOI: 10.3389/fmicb.2023.1099098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Tryptophan derivatives are various aromatic compounds produced in the tryptophan metabolic pathway, such as 5-hydroxytryptophan, 5-hydroxytryptamine, melatonin, 7-chloro-tryptophan, 7-bromo-tryptophan, indigo, indirubin, indole-3-acetic acid, violamycin, and dexoyviolacein. They have high added value, widely used in chemical, food, polymer and pharmaceutical industry and play an important role in treating diseases and improving life. At present, most tryptophan derivatives are synthesized by biosynthesis. The biosynthesis method is to combine metabolic engineering with synthetic biology and system biology, and use the tryptophan biosynthesis pathway of Escherichia coli, Corynebacterium glutamicum and other related microorganisms to reconstruct the artificial biosynthesis pathway, and then produce various tryptophan derivatives. In this paper, the characteristics, applications and specific biosynthetic pathways and methods of these derivatives were reviewed, and some strategies to increase the yield of derivatives and reduce the production cost on the basis of biosynthesis were introduced in order to make some contributions to the development of tryptophan derivatives biosynthesis industry.
Collapse
Affiliation(s)
- Shujian Xiao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| |
Collapse
|
6
|
Hennessy RC, Dichmann SI, Martens HJ, Zervas A, Stougaard P. Serratia inhibens sp. nov., a new antifungal species isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2020; 70:4204-4211. [DOI: 10.1099/ijsem.0.004270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A novel bacterial strain, S40T, with strong antifungal activity was isolated from the rhizosphere of green potato collected from Zealand, Denmark. Polyphasic analysis with a combined phenotypic, phylogenetic and genomic approach was used to characterize S40T. Phylogenetic analysis based on the 16S rRNA gene and MLSA (concatenated gyrB, rpoD, infB and atpD sequences) showed that strain S40T was affiliated with the genus
Serratia
and with
Serratia plymuthica
PRI-2C as the closest related strain [average nucleotide identity (ANI), 99.26 %; DNA–DNA hybridization (dDDH), 99.20%]. However, whole genome sequence analyses revealed that S40T and
S. plymuthica
PRI-2C genomes displayed lower similarities when compared to all other
S. plymuthica
strains (ANI ≤94.34 %; dDDH ≤57.6 % relatedness). The DNA G+C content of strain S40T was determined to be 55.9 mol%. Cells of the strain were Gram-negative, rod-shaped, facultative anaerobic and displayed growth at 10–37 °C (optimum, 25–30 °C) and at pH 6–9 (optimum, pH 6–7). Major fatty acids were C16 : 0 (27.9 %), summed feature (C16 : 1
ω6c/C16 : 1 ω7c; 18.0 %) and C17 : 0 cyclo (15.1 %). The respiratory quinone was determined to be Q8 (94 %) and MK8 (95 %) and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The results of phenotypic, phylogenetic and genomic analyses support the hypothesis that strain S40T represents a novel species of the genus
Serratia
, for which the name Serratia inhibens sp. nov. is proposed. The type strain is S40T (=LMG 31467T=NCIMB 15235T). In addition, we propose that
S. plymuthica
PRI-2C is reclassified and transferred to the species S. inhibens as S. inhibens PRI-2C.
Collapse
Affiliation(s)
- Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Søs I. Dichmann
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Helle Juel Martens
- Present address: HJM: University of Copenhagen, Department of Geosciences and Natural Resource Management, Nørregade 10, 1165 København, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
7
|
Pawar S, Chaudhari A, Prabha R, Shukla R, Singh DP. Microbial Pyrrolnitrin: Natural Metabolite with Immense Practical Utility. Biomolecules 2019; 9:E443. [PMID: 31484394 PMCID: PMC6769897 DOI: 10.3390/biom9090443] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Pyrrolnitrin (PRN) is a microbial pyrrole halometabolite of immense antimicrobial significance for agricultural, pharmaceutical and industrial implications. The compound and its derivatives have been isolated from rhizospheric fluorescent or non-fluorescent pseudomonads, Serratia and Burkholderia. They are known to confer biological control against a wide range of phytopathogenic fungi, and thus offer strong plant protection prospects against soil and seed-borne phytopathogenic diseases. Although chemical synthesis of PRN has been obtained using different steps, microbial production is still the most useful option for producing this metabolite. In many of the plant-associated isolates of Serratia and Burkholderia, production of PRN is dependent on the quorum-sensing regulation that usually involves N-acylhomoserine lactone (AHL) autoinducer signals. When applied on the organisms as antimicrobial agent, the molecule impedes synthesis of key biomolecules (DNA, RNA and protein), uncouples with oxidative phosphorylation, inhibits mitotic division and hampers several biological mechanisms. With its potential broad-spectrum activities, low phototoxicity, non-toxic nature and specificity for impacts on non-target organisms, the metabolite has emerged as a lead molecule of industrial importance, which has led to developing cost-effective methods for the biosynthesis of PRN using microbial fermentation. Quantum of work narrating focused research efforts in the emergence of this potential microbial metabolite is summarized here to present a consolidated, sequential and updated insight into the chemistry, biology and applicability of this natural molecule.
Collapse
Affiliation(s)
- Shraddha Pawar
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India.
| | - Ambalal Chaudhari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India.
| | - Ratna Prabha
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275101, India.
| | - Renu Shukla
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275101, India.
| | - Dhananjaya P Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275101, India.
| |
Collapse
|
8
|
Ben Slama H, Triki MA, Chenari Bouket A, Ben Mefteh F, Alenezi FN, Luptakova L, Cherif-Silini H, Vallat A, Oszako T, Gharsallah N, Belbahri L. Screening of the High-Rhizosphere Competent Limoniastrum monopetalum' Culturable Endophyte Microbiota Allows the Recovery of Multifaceted and Versatile Biocontrol Agents. Microorganisms 2019; 7:microorganisms7080249. [PMID: 31405010 PMCID: PMC6723025 DOI: 10.3390/microorganisms7080249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
Halophyte Limoniastrum monopetalum, an evergreen shrub inhabiting the Mediterranean region, has well-documented phytoremediation potential for metal removal from polluted sites. It is also considered to be a medicinal halophyte with potent activity against plant pathogens. Therefore, L. monopetalum may be a suitable candidate for isolating endophytic microbiota members that provide plant growth promotion (PGP) and resistance to abiotic stresses. Selected for biocontrol abilities, these endophytes may represent multifaceted and versatile biocontrol agents, combining pathogen biocontrol in addition to PGP and plant protection against abiotic stresses. In this study 117 root culturable bacterial endophytes, including Gram-positive (Bacillus and Brevibacillus), Gram-negative (Proteus, Providencia, Serratia, Pantoea, Klebsiella, Enterobacter and Pectobacterium) and actinomycete Nocardiopsis genera have been recovered from L. monopetalum. The collection exhibited high levels of biocontrol abilities against bacterial (Agrobacterium tumefaciens MAT2 and Pectobacterium carotovorum MAT3) and fungal (Alternaria alternata XSZJY-1, Rhizoctonia bataticola MAT1 and Fusarium oxysporum f. sp. radicis lycopersici FORL) pathogens. Several bacteria also showed PGP capacity and resistance to antibiotics and metals. A highly promising candidate Bacillus licheniformis LMRE 36 with high PGP, biocontrol, metal and antibiotic, resistance was subsequently tested in planta (potato and olive trees) for biocontrol of a collection of 14 highly damaging Fusarium species. LMRE 36 proved very effective against the collection in both species and against an emerging Fusarium sp. threatening olive trees culture in nurseries. These findings provide a demonstration of our pyramiding strategy. Our strategy was effective in combining desirable traits in biocontrol agents towards broad-spectrum resistance against pathogens and protection of crops from abiotic stresses. Stacking multiple desirable traits into a single biocontrol agent is achieved by first, careful selection of a host for endophytic microbiota recovery; second, stringent in vitro selection of candidates from the collection; and third, application of the selected biocontrol agents in planta experiments. That pyramiding strategy could be successfully used to mitigate effects of diverse biotic and abiotic stresses on plant growth and productivity. It is anticipated that the strategy will provide a new generation of biocontrol agents by targeting the microbiota of plants in hostile environments.
Collapse
Affiliation(s)
- Houda Ben Slama
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia
- Institut de l'Olivier Sfax, Sfax 3000, Tunisia
| | | | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, 5355179854 Tabriz, Iran
| | - Fedia Ben Mefteh
- Faculty of Science, B.P. 1171, 3000, University of Sfax, Sfax 3029, Tunisia
| | - Faizah N Alenezi
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Lenka Luptakova
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy, 04181 Kosice, Slovakia
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, 19000 Setif, Algeria
| | - Armelle Vallat
- Neuchatel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Tomasz Oszako
- Department of Forest Protection, Forest Research Institute, 05-090 Raszyn, Poland
| | - Neji Gharsallah
- Faculty of Science, B.P. 1171, 3000, University of Sfax, Sfax 3029, Tunisia
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|
9
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019:1-35. [DOI: 10.1007/978-981-13-6986-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Zhang B, Wang Y, Miao J, Lu Y, Lu R, Sun X, Luo W, Chi X, Feng Z, Ge Y. Reciprocal enhancement of gene expression between the phz and prn operon in Pseudomonas chlororaphis G05. J Basic Microbiol 2018; 58:793-805. [PMID: 29995319 DOI: 10.1002/jobm.201800206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 11/09/2022]
Abstract
In previous studies with Pseudomonas chlororaphis G05, two operons (phzABCDEFG and prnABCD) were confirmed to respectively encode enzymes for biosynthesis of phenazine-1-carboxylic acid and pyrrolnitrin that mainly contributed to suppression of some fungal phytopathogens. Although some regulators were identified to govern their expression, it is not known how two operons coordinately interact. By constructing the phz- or/and prn- deletion mutants, we found that in comparison with the wild-type strain G05, phenazine-1-carboxylic acid production in the mutant G05Δprn obviously decreased in GA broth in the absence of prn, and pyrrolnitrin production in the mutant G05Δphz remarkably declined in the absence of phz. By generating the phzA and prnA transcriptional and translational fusions with a truncated lacZ on shuttle vector or on the chromosome, we found that expression of the phz or prn operon was correspondingly increased in the presence of the prn or phz operon at the post-transcriptional level, not at the transcriptional level. These results indicated that the presence of one operon would promote the expression of the other one operon between the phz and prn. This reciprocal enhancement would keep the strain G05 producing more different antifungal compounds coordinately and living better with growth suppression of other microorganisms.
Collapse
Affiliation(s)
- Baoshen Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yanhua Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Jing Miao
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Ruiyang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoqiang Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Wangtai Luo
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|