1
|
Schulte A, Brockmann J, Müller N, Anderlei T, Büchs J. A new approach to off-gas analysis for shaken bioreactors showing high CTR and RQ accuracy. J Biol Eng 2025; 19:11. [PMID: 39875892 PMCID: PMC11776160 DOI: 10.1186/s13036-025-00480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Shake flasks are essential tools in biotechnological development due to their cost efficiency and ease of use. However, a significant challenge is the miniaturization of process analytical tools to maximize information output from each cultivation. This study aimed to develop a respiration activity online measurement system via off-gas analysis, named "Transfer rate Online Measurement" (TOM), for determining the oxygen transfer rate (OTR), carbon dioxide transfer rate (CTR), and the respiration quotient (RQ) in surface-aerated bioreactors, primarily targeting shake flasks. RESULTS Sensors for off-gas analysis were placed in a bypass system that avoids the shaking of the electronics and sensors. An electrochemical oxygen sensor and an infrared CO2 sensor were used. The bypass system was combined with the established method of recurrent dynamic measurement phases, evaluating the decrease in oxygen and the increase in CO2 during stopped aeration. The newly developed measurement system showed high accuracy, precision and reproducibility among individual flasks, especially regarding CTR measurement. The system was compared with state-of-the-art RAMOS technology (Respiration Activity Monitoring System, see explanation below) and calibrated with a non-biological model system. The accuracy of RQ measurement was +-4% for the tested range (8% filling volume, OTR and CTR: 0-56 mmol/L/h), allowing for the determination of metabolic switches and quantitative analysis of metabolites. At ambient CO2 levels, a CTR resolution of less than 0.01 mmol/L/h was possible. The system was applied to the microbial model systems S. cerevisiae, G. oxydans, and E. coli. Physiological states, such as growth vs. protein production, could be revealed, and quantitative analysis of metabolites was performed, putting focus on RQ measurements. CONCLUSIONS The developed TOM system showcases a novel approach to measuring OTR, CTR, and RQ in shaken bioreactors. It offers a robust and accurate solution for respiration activity analysis. Due to its flexible design and tunable accuracy, it enables measurement in various applications and different shake flasks.
Collapse
Affiliation(s)
- Andreas Schulte
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074, Aachen, Germany
- Kuhner Shaker GmbH, Kaiserstr. 100, 52134, Herzogenrath, Germany
| | - Janik Brockmann
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074, Aachen, Germany
| | - Nina Müller
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074, Aachen, Germany
| | - Tibor Anderlei
- Kuhner AG, Dinkelbergstr. 1, Birsfelden, CH-4127, Switzerland
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074, Aachen, Germany.
| |
Collapse
|
2
|
Brauneck G, Engel D, Grebe LA, Hoffmann M, Lichtenberg PG, Neuß A, Mann M, Magnus JB. Pitfalls in Early Bioprocess Development Using Shake Flask Cultivations. Eng Life Sci 2025; 25:e70001. [PMID: 39877379 PMCID: PMC11773345 DOI: 10.1002/elsc.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
For about 100 years, the shake flask has been established for biotechnological cultivations as one of the most important cultivation systems in early process development. Its appeal lies in its simple handling and highly versatile application for a wide range of cell types-from bacteria to mammalian cells. In recent decades, extensive research has been conducted on the shake flask, to not perform processes blindly but to gain a deeper understanding of the various process parameters, phenomena, and their impact on the process. Although the characterization of the shake flask is now well-established in literature, many publications show that this knowledge is often inadequately applied. Therefore, this review provides an overview of the current state of knowledge on various topics related to the shake flask. We first present the key process parameters and their influence on different physical phenomena, such as power input, the largely unknown in-phase/out-of-phase phenomenon, as well as temperature and mass transfer. Then, the most common online monitoring systems that have been established for shake flasks are discussed. Finally, various pitfalls that often arise from inadequate knowledge of handling shake flask cultivations are discussed and guidance on how to avoid them is provided.
Collapse
Affiliation(s)
- Gesa Brauneck
- AVT – Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | - Dominik Engel
- AVT – Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | | | | | | | - Anne Neuß
- AVT – Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | - Marcel Mann
- AVT – Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | | |
Collapse
|
3
|
Takahashi M, Sawada Y, Aoyagi H. A forced aeration system for microbial culture of multiple shaken vessels suppresses volatilization. Arch Microbiol 2024; 206:246. [PMID: 38704767 DOI: 10.1007/s00203-024-03960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Shake-flask culture, an aerobic submerged culture, has been used in various applications involving cell cultivation. However, it is not designed for forced aeration. Hence, this study aimed to develop a small-scale submerged shaking culture system enabling forced aeration into the medium. A forced aeration control system for multiple vessels allows shaking, suppresses volatilization, and is attachable externally to existing shaking tables. Using a specially developed plug, medium volatilization was reduced to less than 10%, even after 45 h of continuous aeration (~ 60 mL/min of dry air) in a 50 mL working volume. Escherichia coli IFO3301 cultivation with aeration was completed within a shorter period than that without aeration, with a 35% reduction in the time-to-reach maximum bacterial concentration (26.5 g-dry cell/L) and a 1.25-fold increase in maximum concentration. The maximum bacterial concentration achieved with aeration was identical to that obtained using the Erlenmeyer flask, with a 65% reduction in the time required to reach it.
Collapse
Affiliation(s)
- Masato Takahashi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshisuke Sawada
- Iwashiya Bio Science, LLC, 2-18-4, Higashi Shinmachi, Itabashi-ku, Tokyo, 174-0074, Japan
| | - Hideki Aoyagi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
4
|
Riedel SL, Donicz EN, Ferré-Aparicio P, Santolin L, Marbà-Ardébol AM, Neubauer P, Junne S. Workflow for shake flask and plate cultivations with fats for polyhydroxyalkanoate bioproduction. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12599-w. [PMID: 37266584 DOI: 10.1007/s00253-023-12599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Since natural resources for the bioproduction of commodity chemicals are scarce, waste animal fats (WAF) are an interesting alternative biogenic residual feedstock. They appear as by-product from meat production, but several challenges are related to their application: first, the high melting points (up to 60 °C); and second, the insolubility in the polar water phase of cultivations. This leads to film and clump formation in shake flasks and microwell plates, which inhibits microbial consumption. In this study, different flask and well designs were investigated to identify the most suitable experimental set-up and further to create an appropriate workflow to achieve the required reproducibility of growth and product synthesis. The dissolved oxygen concentration was measured in-line throughout experiments. It became obvious that the gas mass transfer differed strongly among the shake flask design variants in cultivations with the polyhydroxyalkanoate (PHA) accumulating organism Ralstonia eutropha. A high reproducibility was achieved for certain flask or well plate design variants together with tailored cultivation conditions. Best results were achieved with bottom baffled glass and bottom baffled single-use shake flasks with flat membranes, namely, >6 g L-1 of cell dry weight (CDW) with >80 wt% polyhydroxybutyrate (PHB) from 1 wt% WAF. Improved pre-emulsification conditions for round microwell plates resulted in a production of 14 g L-1 CDW with a PHA content of 70 wt% PHB from 3 wt% WAF. The proposed workflow allows the rapid examination of fat material as feedstock, in the microwell plate and shake flask scale, also beyond PHA production. KEY POINTS: • Evaluation of shake flask designs for cultivating with hydrophobic raw materials • Development of a workflow for microwell plate cultivations with hydrophobic raw materials • Production of polyhydroxyalkanoate in small scale experiments from waste animal fat.
Collapse
Affiliation(s)
- Sebastian L Riedel
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
- Department VIII - Mechanical Engineering, Event Technology and Process Engineering, Laboratory of Environmental and Bioprocess Engineering, Berliner Hochschule für Technik, Seestr. 64, Berlin, D-13347, Germany
| | - Ewelina N Donicz
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Paula Ferré-Aparicio
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Lara Santolin
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Anna-Maria Marbà-Ardébol
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Peter Neubauer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Stefan Junne
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany.
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, DK-6700, Esbjerg, Denmark.
| |
Collapse
|
5
|
Takahashi M, Aoyagi H. Control of carbon dioxide concentration in headspace of multiple flasks using both non-electric bellows pump and shaking incubator. J Biosci Bioeng 2022; 134:240-247. [PMID: 35840513 DOI: 10.1016/j.jbiosc.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
Abstract
Current methods of controlling gas in the headspace involve constant speed aeration and proportional-integral-differential (PID) controlled aeration using improved monitoring devices or gas cylinders. However, these approaches are restricted and inconvenient to use. In this study, we propose a method to control the CO2 concentration in the headspace while maintaining the convenience of shake-flask culture. A combination of a non-electric bellows pump for shake-flask (NeBP-sf) and a CO2 incubator was used to control the flask gas phase by shaking without additional external power. The CO2 half-life, as an indicator of the ventilation ability of the system, was measured using a circulation direct monitoring and sampling system, and the NeBP-sf was optimised. The ventilation capacity varied depending on the shaking speed, and under optimal conditions, was 10 min compared with 45 min when only a breathable culture plug was used. In conventional microbial shaking culture, the CO2 concentration in the flask gas phase remained higher than the 5% set-value with a maximum of 9%, resulting in a large concentration difference with the set point. Therefore, the ventilation capacity of the conventional shake-flask culture was insufficient for aerobic culture. Cultivation of Escherichia coli and Lactiplantibacillus plantarum using the system showed no significant difference between the set point and real point values. Thus, the system combined an NeBP-sf and a gas incubator built-in shaking table to achieve the reproducibility of gas control while maintaining a high level of convenience.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
6
|
Hanyu Y, Kato M. High-yield expression of periplasmic single-chain variable fragments by solid Escherichia coli cultures. Biotechniques 2021; 72:29-32. [PMID: 34841891 DOI: 10.2144/btn-2021-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
High-yield expression of quality antibody fragments is indispensable for research and diagnosis. Most recombinant antibody fragments are expressed in Escherichia coli using liquid cultures; however, their yields and quality are often poor. Here the authors expressed a single-chain variable fragment in E. coli cultivated on the wet surface of a solid support. Compared with a liquid culture, the authors obtained 2.5-times more single-chain variable fragments with membrane-cultivated E. coli. This method has two important advantages: it enables high yields of periplasmic single-chain variable fragments compared with liquid culture and offers simple and rapid expression and extraction.
Collapse
Affiliation(s)
- Yoshiro Hanyu
- Biomaterials Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Mieko Kato
- Department of Biochemistry, Bio-Peak Co., Ltd., 584-70 Shimonojo, Takasaki, 370-0854, Japan
| |
Collapse
|
7
|
Ganeshan S, Kim SH, Vujanovic V. Scaling-up production of plant endophytes in bioreactors: concepts, challenges and perspectives. BIORESOUR BIOPROCESS 2021; 8:63. [PMID: 34760435 PMCID: PMC8570317 DOI: 10.1186/s40643-021-00417-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/09/2021] [Indexed: 11/11/2022] Open
Abstract
The benefit of microorganisms to humans, animals, insects and plants is increasingly recognized, with intensified microbial endophytes research indicative of this realization. In the agriculture industry, the benefits are tremendous to move towards sustainable crop production and minimize or circumvent the use of chemical fertilizers and pesticides. The research leading to the identification of potential plant endophytes is long and arduous and for many researchers the challenge is ultimately in scale-up production. While many of the larger agriculture and food industries have their own scale-up and manufacturing facilities, for many in academia and start-up companies the next steps towards production have been a stumbling block due to lack of information and understanding of the processes involved in scale-up fermentation. This review provides an overview of the fermentation process from shake flask cultures to scale-up and the manufacturing steps involved such as process development optimization (PDO), process hazard analysis (PHA), pre-, in- and post-production (PIP) challenges and finally the preparation of a technology transfer package (TTP) to transition the PDO to manufacturing. The focus is on submerged liquid fermentation (SLF) and plant endophytes production by providing original examples of fungal and bacterial endophytes, plant growth promoting Penicillium sp. and Streptomyces sp. bioinoculants, respectively. We also discuss the concepts, challenges and future perspectives of the scale-up microbial endophyte process technology based on the industrial and biosafety research platform for advancing a massive production of next-generation biologicals in bioreactors.
Collapse
Affiliation(s)
- Seedhabadee Ganeshan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
8
|
Takahashi M, Aoyagi H. Development of a bellows pumping device for enhancing ventilation to shake-flask systems. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Klaubert SR, Chitwood DG, Dahodwala H, Williamson M, Kasper R, Lee KH, Harcum SW. Method to transfer Chinese hamster ovary (CHO) batch shake flask experiments to large-scale, computer-controlled fed-batch bioreactors. Methods Enzymol 2021; 660:297-320. [PMID: 34742394 DOI: 10.1016/bs.mie.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chinese hamster ovary (CHO) cell cultures in industry are most commonly conducted as fed-batch cultures in computer-controlled bioreactors, though most preliminary studies are conducted in fed-batch shake flasks. To improve comparability between bioreactor studies and shake flask studies, shake flask studies should be conducted as fed-batch. However, the smaller volumes and reduced control in shake flasks can impact pH and aeration, which leads to performance differences. Planning and awareness of these vessel and control differences can assist with experimental design as well as troubleshooting. This method will highlight several of the configuration and control issues that should be considered during the transitions from batch to fed-batch and shake flasks to bioreactors, as well as approaches to mitigate the differences. Furthermore, if significant differences occur between bioreactor and shake flask studies, approaches will be presented to isolate the main contributors for these differences.
Collapse
Affiliation(s)
- Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Dylan G Chitwood
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Hussain Dahodwala
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE, United States
| | - Madison Williamson
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Rachel Kasper
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Kelvin H Lee
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States.
| |
Collapse
|
10
|
Strategies for the Production of Soluble Interferon-Alpha Consensus and Potential Application in Arboviruses and SARS-CoV-2. Life (Basel) 2021; 11:life11060460. [PMID: 34063766 PMCID: PMC8223780 DOI: 10.3390/life11060460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biopharmaceutical production is currently a multibillion-dollar industry with high growth perspectives. The research and development of biologically sourced pharmaceuticals are extremely important and a reality in our current healthcare system. Interferon alpha consensus (cIFN) is a non-natural synthetic antiviral molecule that comprises all the most prevalent amino acids of IFN-α into one consensus protein sequence. For clinical use, cIFN is produced in E. coli in the form of inclusion bodies. Here, we describe the use of two solubility tags (Fh8 and DsbC) to improve soluble cIFN production. Furthermore, we analyzed cIFN production in different culture media and temperatures in order to improve biopharmaceutical production. Our results demonstrate that Fh8-cIFN yield was improved when bacteria were cultivated in autoinduction culture medium at 30 °C. After hydrolysis, the recovery of soluble untagged cIFN was 58% from purified Fh8-cIFN molecule, fourfold higher when compared to cIFN recovered from the DsbC-cIFN, which achieved 14% recovery. The biological activity of cIFN was tested on in vitro model of antiviral effect against Zika, Mayaro, Chikungunya and SARS-CoV-2 virus infection in susceptible VERO cells. We show, for the first time, that cIFN has a potent activity against these viruses, being very low amounts of the molecule sufficient to inhibit virus multiplication. Thus, this molecule could be used in a clinical approach to treat Arboviruses and SARS-CoV-2.
Collapse
|
11
|
Takahashi M, Aoyagi H. Analysis of porous breathable stopper and development of PID control for gas phase during shake-flask culture with microorganisms. Appl Microbiol Biotechnol 2020; 104:8925-8936. [PMID: 32870338 DOI: 10.1007/s00253-020-10847-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
We evaluated the ventilation ability of two types (plug-type and cap-type) of culture-stoppers having standard air permeability. The culture-stoppers were evaluated using the circulation direct monitoring and sampling system with CO2 concentration in the gas phase of a shake-flask culture as an index. The half-lives of CO2 in the headspace of the shake flask with the plug-type and cap-type stoppers were about 51.5 min and about 30.3 min, respectively. Based on these half-lives, we formulated a model equation to simulate the behaviour of CO2 with different culture-stoppers. After validating the model equation by shake-flask culture with Saccharomyces cerevisiae, we investigated the effect of different ventilation abilities of the culture-stoppers on the growth of Pelomonas saccharophila and Escherichia coli: the sensitivity of the culture-stopper to the ventilation ability was dependent on the microorganism species. In the case of P. saccharophila, when the plug-type culture-stopper was combined with controlled CO2 concentration (6%) in the flask, the maximum yield increased by twofold compared to that of the control. This study shows the importance of ventilation in headspace and conventional culture-stoppers during the shake-flask culture of microorganisms. The problems that may occur between the conventional shake-flask culture approach using a breathable culture-stopper and the next-generation shake-flask culture without a conventional culture-stopper were clarified from the evaluation of gas-permeable culture-stoppers. The importance of controlled gaseous phase in the headspace during shake-flask culture of the microorganisms was also elucidated. KEY POINTS: • Ventilation capacity of culture-stoppers was evaluated using the CO2 half-life concentration. • Behaviour of microorganisms varies with the type of culture-stopper. • Developed a PID system for control of CO2 in flask gas phase to enhance the shake-flask culture.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
12
|
Takahashi M, Honzawa T, Tominaga R, Aoyagi H. Analysis of the influence of flame sterilization included in sampling operations on shake-flask cultures of microorganisms. Sci Rep 2020; 10:10385. [PMID: 32606322 PMCID: PMC7326993 DOI: 10.1038/s41598-020-66810-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Shake-flask cultures of microorganisms involve flame sterilization during sampling, which produces combustion gas with high CO2 concentrations. The gaseous destination has not been deeply analyzed. Our aim was to investigate the effect of flame sterilization on the headspace of the flask and on the shake-flask culture. In this study, the headspace CO2 concentration was found to increase during flame sterilization ~0.5–2.0% over 5–20 s empirically using the Circulation Direct Monitoring and Sampling System. This CO2 accumulation was confirmed theoretically using Computational Fluid Dynamics; it was 9% topically. To evaluate the influence of CO2 accumulation without interference from other sampling factors, the flask gas phase formed by flame sterilization was reproduced by aseptically supplying 99.8% CO2 into the headspace, without sampling. We developed a unit that can be sampled in situ without interruption of shaking, movement to a clean bench, opening of the culture-plug, and flame sterilization. We observed that the growth behaviour of Escherichia coli, Pelomonas saccharophila, Acetobacter pasteurianus, and Saccharomyces cerevisiae was different depending on the CO2 aeration conditions. These results are expected to contribute to improving microbial cell culture systems.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takafumi Honzawa
- Combustion of Thermo and Fluid Dynamics, Department of Fundamental Technology, Tokyo Gas Co. Ltd., Yokohama, Kanagawa, 230-0045, Japan
| | - Ryuichi Tominaga
- Combustion of Thermo and Fluid Dynamics, Department of Fundamental Technology, Tokyo Gas Co. Ltd., Yokohama, Kanagawa, 230-0045, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
13
|
Takahashi M, Aoyagi H. Analysis and effect of conventional flasks in shaking culture of Escherichia coli. AMB Express 2020; 10:77. [PMID: 32307613 PMCID: PMC7167391 DOI: 10.1186/s13568-020-01013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
The circulation direct monitoring and sampling system (CDMSS) is used as a monitoring device for CO2 and O2 concentrations of bypass type in shake-culture flask. The CDMSS could measure kLa, an index for evaluating the performance of aerobic culture incubators, and kG, an indicator of the degree of CO2 ventilation in the flask gas phase. We observed that cylindrical flasks provided a different culture environment, yielded a much higher kG than the Erlenmeyer and Sakaguchi flasks, and yielded kLa equivalent to that by Erlenmeyer flask by setting the ring-type baffle appropriately. Baffled cylindrical flask used for Escherichia coli K12 IFO3301 shake culture maintained lower CO2 concentrations in the headspace than conventional flasks; therefore, CO2 accumulation in the culture broth could be suppressed. Cell growth in baffled cylindrical flask (with kLa equivalent to that of the Erlenmeyer flask) was about 1.3 and 1.4 times that in the Erlenmeyer and Sakaguchi flasks, respectively. This study focused on the batch culture at the flask scale and designed the headspace environment with low CO2 accumulation. Therefore, we conclude that redesign of flasks based on kLa and kG may contribute to a wide range of fields employing microorganism culture.
Collapse
|
14
|
Chopda VR, Holzberg T, Ge X, Folio B, Wong L, Tolosa M, Kostov Y, Tolosa L, Rao G. Real-time dissolved carbon dioxide monitoring II: Surface aeration intensification for efficient CO 2 removal in shake flasks and mini-bioreactors leads to superior growth and recombinant protein yields. Biotechnol Bioeng 2020; 117:992-998. [PMID: 31840800 PMCID: PMC7078866 DOI: 10.1002/bit.27252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
Mass transfer is known to play a critical role in bioprocess performance and henceforth monitoring dissolved O2 (DO) and dissolved CO2 (dCO2 ) is of paramount importance. At bioreactor level these parameters can be monitored online and can be controlled by sparging air/oxygen or stirrer speed. However, traditional small-scale systems such as shake flasks lack real time monitoring and also employ only surface aeration with additional diffusion limitations imposed by the culture plug. Here we present implementation of intensifying surface aeration by sparging air in the headspace of the reaction vessel and real-time monitoring of DO and dCO2 in the bioprocesses to evaluate the impact of intensified surface aeration. We observed that sparging air in the headspace allowed us to keep dCO2 at low level, which significantly improved not only biomass growth but also protein yield. We expect that implementing such controlled smart shake flasks can minimize the process development gap which currently exists in shake flask level and bioreactor level results.
Collapse
Affiliation(s)
- Viki R. Chopda
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Timothy Holzberg
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Xudong Ge
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Brandon Folio
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Lynn Wong
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Michael Tolosa
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Yordan Kostov
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Leah Tolosa
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Govind Rao
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| |
Collapse
|
15
|
Chopda VR, Holzberg T, Ge X, Folio B, Tolosa M, Kostov Y, Tolosa L, Rao G. Real-time dissolved carbon dioxide monitoring I: Application of a novel in situ sensor for CO 2 monitoring and control. Biotechnol Bioeng 2020; 117:981-991. [PMID: 31840812 PMCID: PMC7079146 DOI: 10.1002/bit.27253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
Dissolved carbon dioxide (dCO2 ) is a well-known critical parameter in bioprocesses due to its significant impact on cell metabolism and on product quality attributes. Processes run at small-scale faces many challenges due to limited options for modular sensors for online monitoring and control. Traditional sensors are bulky, costly, and invasive in nature and do not fit in small-scale systems. In this study, we present the implementation of a novel, rate-based technique for real-time monitoring of dCO2 in bioprocesses. A silicone sampling probe that allows the diffusion of CO2 through its wall was inserted inside a shake flask/bioreactor and then flushed with air to remove the CO2 that had diffused into the probe from the culture broth (sensor was calibrated using air as zero-point calibration). The gas inside the probe was then allowed to recirculate through gas-impermeable tubing to a CO2 monitor. We have shown that by measuring the initial diffusion rate of CO2 into the sampling probe we were able to determine the partial pressure of the dCO2 in the culture. This technique can be readily automated, and measurements can be made in minutes. Demonstration experiments conducted with baker's yeast and Yarrowia lipolytica yeast cells in both shake flasks and mini bioreactors showed that it can monitor dCO2 in real-time. Using the proposed sensor, we successfully implemented a dCO2 -based control scheme, which resulted in significant improvement in process performance.
Collapse
Affiliation(s)
- Viki R. Chopda
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Timothy Holzberg
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Xudong Ge
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Brandon Folio
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Michael Tolosa
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Yordan Kostov
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Leah Tolosa
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Govind Rao
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| |
Collapse
|
16
|
Monitoring of CO 2 and O 2 concentrations in the headspace of Sakaguchi flasks during liquid culture of microorganism. Appl Microbiol Biotechnol 2018; 102:6637-6645. [PMID: 29850959 DOI: 10.1007/s00253-018-9076-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 09/29/2022]
Abstract
CO2 and O2 in the Sakaguchi flask headspace during culture was monitored via circulation direct monitoring and sampling system (CDMSS), a device with circulation bypass system. In static culture with Saccharomyces cerevisiae (circulation rate, 50 mL/min), a vertical CO2 concentration gradient (maximum gap ~ 2% (v/v) [height from the bottom of flask 45 mm, 7%; 155 mm, 5%]) in the Sakaguchi flask headspace was observed; no concentration O2 gradient was observed. However, shake flask culture showed vertical gradient concentrations for both CO2 and O2 (maximum gap of CO2 and O2 concentrations: 2 and 4% [heights from the bottom of flask 115 mm, 6.0 and 9.5%; 175 mm, 4.0 and 13.5%], respectively). When the CDMSS circulation rate in the Sakaguchi flask headspace was 300 or 400 mL/min, the gaseous environment was uniformly distributed so that no vertical gradient concentration was observed. In shaking culture with Escherichia coli under these conditions, CO2 was accumulated at high concentrations in the headspace and culture broth (maximum values 8%, in the headspace; 120 mg/L, in the culture broth). Most of the accumulated CO2 in the headspace could be removed by inserting a column packed with CO2 adsorbent at the bypass port of the CDMSS gaseous circulation. Thus, dissolved CO2 was maintained at a lower concentration, and the final UOD (unit optical density) value of culture was increased compared with that of the control. This study is the first to demonstrate that vertical gradients of CO2 and O2 concentrations exist in the headspace of Sakaguchi flask during culture.
Collapse
|