1
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Sheng X, Kroutil W, Himo F. Computational Study of the Fries Rearrangement Catalyzed by Acyltransferase from Pseudomonas protegens. ChemistryOpen 2024; 13:e202300256. [PMID: 38224208 PMCID: PMC11230933 DOI: 10.1002/open.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Indexed: 01/16/2024] Open
Abstract
The acyltransferase from Pseudomonas protegens (PpATase) catalyzes in nature the reversible transformation of monoacetylphloroglucinol to diacetylphloroglucinol and phloroglucinol. Interestingly, this enzyme has been shown to catalyze the promiscuous transformation of 3-hydroxyphenyl acetate to 2',4'-dihydroxyacetophenone, representing a biological version of the Fries rearrangement. In the present study, we report a mechanistic investigation of this activity of PpATase using quantum chemical calculations. A detailed mechanism is proposed, and the energy profile for the reaction is presented. The calculations show that the acylation of the enzyme is highly exothermic, while the acetyl transfer back to the substrate is only slightly exothermic. The deprotonation of the C6-H of the substrate is rate-limiting, and a remote aspartate residue (Asp137) is proposed to be the general base group in this step. Analysis of the binding energies of various acetyl acceptors shows that PpATase can promote both intramolecular and intermolecular Fries rearrangement towards diverse compounds.
Collapse
Affiliation(s)
- Xiang Sheng
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- National Center of Technology Innovation for Synthetic BiologyNational Engineering Research Center of Industrial EnzymesTianjin300308P.R. China
| | - Wolfgang Kroutil
- Institute of ChemistryNAWI GrazUniversity of Graz8010GrazAustria
- Field of Excellence BioHealthBioTechMed Graz8010GrazAustria
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| |
Collapse
|
3
|
Kumar V, Turnbull WB, Kumar A. Review on Recent Developments in Biocatalysts for Friedel–Crafts Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| |
Collapse
|
4
|
Characterization and Assessment of 2, 4-Diacetylphloroglucinol (DAPG)-Producing Pseudomonas fluorescens VSMKU3054 for the Management of Tomato Bacterial Wilt Caused by Ralstonia solanacearum. Microorganisms 2022; 10:microorganisms10081508. [PMID: 35893565 PMCID: PMC9330548 DOI: 10.3390/microorganisms10081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Microbial bio-products are becoming an appealing and viable alternative to chemical pesticides for effective management of crop diseases. These bio-products are known to have potential to minimize agrochemical applications without losing crop yield and also restore soil fertility and productivity. In this study, the inhibitory efficacy of 2,4-diacetylphloroglucinol (DAPG) produced by Pseudomonas fluorescens VSMKU3054 against Ralstonia solanacearum was assessed. Biochemical and functional characterization study revealed that P. fluorescens produced hydrogen cyanide (HCN), siderophore, indole acetic acid (IAA) and hydrolytic enzymes such as amylase, protease, cellulase and chitinase, and had the ability to solubilize phosphate. The presence of the key antimicrobial encoding gene in the biosynthesis of 2,4-diacetylphloroglucinol (DAPG) was identified by PCR. The maximum growth and antimicrobial activity of P. fluorescens was observed in king’s B medium at pH 7, 37 °C and 36 h of growth. Glucose and tryptone were found to be the most suitable carbon and nitrogen sources, respectively. DAPG was separated by silica column chromatography and identified by various methods such as UV-Vis, FT-IR, GC-MS and NMR spectroscopy. When R. solanacearum cells were exposed to DAPG at 90 µg/mL, the cell viability was decreased, reactive oxygen species (ROS) were increased and chromosomal DNA was damaged. Application of P. fluorescens and DAPG significantly reduced the bacterial wilt incidence. In addition, P. fluorescens was also found effective in promoting the growth of tomato seedlings. It is concluded that the indigenous isolate P. fluorescens VSMKU3054 could be used as a suitable biocontrol agent against bacterial wilt disease of tomato.
Collapse
|
5
|
Biessy A, Filion M. Phloroglucinol Derivatives in Plant-Beneficial Pseudomonas spp.: Biosynthesis, Regulation, and Functions. Metabolites 2021; 11:metabo11030182. [PMID: 33804595 PMCID: PMC8003664 DOI: 10.3390/metabo11030182] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-beneficial Pseudomonas spp. aggressively colonize the rhizosphere and produce numerous secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG). DAPG is a phloroglucinol derivative that contributes to disease suppression, thanks to its broad-spectrum antimicrobial activity. A famous example of this biocontrol activity has been previously described in the context of wheat monoculture where a decline in take-all disease (caused by the ascomycete Gaeumannomyces tritici) has been shown to be associated with rhizosphere colonization by DAPG-producing Pseudomonas spp. In this review, we discuss the biosynthesis and regulation of phloroglucinol derivatives in the genus Pseudomonas, as well as investigate the role played by DAPG-producing Pseudomonas spp. in natural soil suppressiveness. We also tackle the mode of action of phloroglucinol derivatives, which can act as antibiotics, signalling molecules and, in some cases, even as pathogenicity factors. Finally, we discuss the genetic and genomic diversity of DAPG-producing Pseudomonas spp. as well as its importance for improving the biocontrol of plant pathogens.
Collapse
|
6
|
Ishida K, Shabuer G, Schieferdecker S, Pidot SJ, Stinear TP, Knuepfer U, Cyrulies M, Hertweck C. Oak-Associated Negativicute Equipped with Ancestral Aromatic Polyketide Synthase Produces Antimycobacterial Dendrubins. Chemistry 2020; 26:13147-13151. [PMID: 32597507 PMCID: PMC7693217 DOI: 10.1002/chem.202001939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/26/2020] [Indexed: 11/07/2022]
Abstract
Anaerobic bacteria have only recently been recognized as a source of antibiotics; yet, the metabolic potential of Negativicutes (Gram-negative staining Firmicutes) such as the oak-associated Dendrosporobacter quercicolus has remained unknown. Genome mining of D. quercicolus and phylogenetic analyses revealed a gene cluster for a type II polyketide synthase (PKS) complex that belongs to the most ancestral enzyme systems of this type. Metabolic profiling, NMR analyses, and stable-isotope labeling led to the discovery of a new family of anthraquinone-type polyphenols, the dendrubins, which are diversified by acylation, methylation, and dimerization. Dendrubin A and B were identified as strong antibiotics against a range of clinically relevant, human-pathogenic mycobacteria.
Collapse
Affiliation(s)
- Keishi Ishida
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Gulimila Shabuer
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sebastian Schieferdecker
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sacha J Pidot
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, 3000, Melbourne, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, 3000, Melbourne, Australia
| | - Uwe Knuepfer
- Biopilot Plant, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Michael Cyrulies
- Biopilot Plant, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany.,Institute for Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
7
|
Sheng X, Kazemi M, Żądło-Dobrowolska A, Kroutil W, Himo F. Mechanism of Biocatalytic Friedel-Crafts Acylation by Acyltransferase from Pseudomonas protegens. ACS Catal 2020; 10:570-577. [PMID: 31929947 PMCID: PMC6945686 DOI: 10.1021/acscatal.9b04208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/18/2019] [Indexed: 12/22/2022]
Abstract
Acyltransferases isolated from Pseudomonas protegens (PpATase) and Pseudomonas fluorescens (PfATase) have recently been reported to catalyze the Friedel-Crafts acylation, providing a biological version of this classical organic reaction. These enzymes catalyze the cofactor-independent acylation of monoacetylphloroglucinol (MAPG) to diacetylphloroglucinol (DAPG) and phloroglucinol (PG) and have been demonstrated to have a wide substrate scope, making them valuable for potential applications in biocatalysis. Herein, we present a detailed reaction mechanism of PpATase on the basis of quantum chemical calculations, employing a large model of the active site. The proposed mechanism is consistent with available kinetics, mutagenesis, and structural data. The roles of various active site residues are analyzed. Very importantly, the Asp137 residue, located more than 10 Å from the substrate, is predicted to be the proton source for the protonation of the substrate in the rate-determining step. This key prediction is corroborated by site-directed mutagenesis experiments. Based on the current calculations, the regioselectivity of PpATase and its specificity toward non-natural substrates can be rationalized.
Collapse
Affiliation(s)
- Xiang Sheng
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Masoud Kazemi
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anna Żądło-Dobrowolska
- Institute
of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Wolfgang Kroutil
- Institute
of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|