1
|
Trisrivirat D, Tinikul R, Chaiyen P. Synthetic microbes and biocatalyst designs in Thailand. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:28-40. [PMID: 39416912 PMCID: PMC11446377 DOI: 10.1016/j.biotno.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 10/19/2024]
Abstract
Furthering the development of the field of synthetic biology in Thailand is included in the Thai government's Bio-Circular-Green (BCG) economic policy. The BCG model has increased collaborations between government, academia and private sectors with the specific aim of increasing the value of bioindustries via sustainable approaches. This article provides a critical review of current academic research related to synthetic biology conducted in Thailand during the last decade including genetic manipulation, metabolic engineering, cofactor enhancement to produce valuable chemicals, and analysis of synthetic cells using systems biology. Work was grouped according to a Design-Build-Test-Learn cycle. Technical areas directly supporting development of synthetic biology for BCG in the future such as enzyme catalysis, enzyme engineering and systems biology related to culture conditions are also discussed. Key activities towards development of synthetic biology in Thailand are also discussed.
Collapse
Affiliation(s)
- Duangthip Trisrivirat
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| |
Collapse
|
2
|
Liu H, Zhou P, Qi M, Guo L, Gao C, Hu G, Song W, Wu J, Chen X, Chen J, Chen W, Liu L. Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nat Commun 2022; 13:1886. [PMID: 35393407 PMCID: PMC8991263 DOI: 10.1038/s41467-022-29560-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Saccharomyces cerevisiae is widely employed as a cell factory for the production of biofuels. However, product toxicity has hindered improvements in biofuel production. Here, we engineer the actin cytoskeleton in S. cerevisiae to increase both the cell growth and production of n-butanol and medium-chain fatty acids. Actin cable tortuosity is regulated using an n-butanol responsive promoter-based autonomous bidirectional signal conditioner in S. cerevisiae. The budding index is increased by 14.0%, resulting in the highest n-butanol titer of 1674.3 mg L-1. Moreover, actin patch density is fine-tuned using a medium-chain fatty acid responsive promoter-based autonomous bidirectional signal conditioner. The intracellular pH is stabilized at 6.4, yielding the highest medium-chain fatty acids titer of 692.3 mg L-1 in yeast extract peptone dextrose medium. Engineering the actin cytoskeleton in S. cerevisiae can efficiently alleviate biofuels toxicity and enhance biofuels production.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Jiménez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan LE, Guo L, Wang Y. Enhancing the tolerance of Clostridium saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from Pseudomonas putida. BIORESOURCE TECHNOLOGY 2020; 312:123532. [PMID: 32502888 DOI: 10.1016/j.biortech.2020.123532] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Furan aldehydes and phenolic compounds generated during biomass pretreatment can inhibit fermentation for biofuel production. Efflux pumps actively transport small molecules out of cells, thus sustaining normal microbial metabolism. Pseudomonas putida has outstanding tolerance to butanol and other small molecules, and we hypothesize that its efflux pump could play essential roles for such robustness. Here, we overexpressed efflux pump genes from P. putida to enhance tolerance of hyper-butanol producing Clostridium saccharoperbutylacetonicum to fermentation inhibitors. Interestingly, overexpression of the whole unit resulted in decreased tolerance, while overexpression of the subunit (srpB) alone exerted significant enhanced robustness of the strain. Compared to the control, the engineered strain had enhanced capability to grow in media containing 17% more furfural or 50% more ferulic acid, and produced ~14 g/L butanol (comparable to fermentation under regular conditions without inhibitors). This study provided valuable reference for boosting microbial robustness towards efficient biofuel production from lignocellulosic materials.
Collapse
Affiliation(s)
- Pablo Jiménez-Bonilla
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; School of Chemistry, National University (UNA), Heredia, Costa Rica
| | - Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yifen Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA
| | - David Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Luz-Estela de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
4
|
Vinayavekhin N, Kongchai W, Piapukiew J, Chavasiri W. Aspergillus niger upregulated glycerolipid metabolism and ethanol utilization pathway under ethanol stress. Microbiologyopen 2019; 9:e00948. [PMID: 31646764 PMCID: PMC6957411 DOI: 10.1002/mbo3.948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022] Open
Abstract
The knowledge of how Aspergillus niger responds to ethanol can lead to the design of strains with enhanced ethanol tolerance to be utilized in numerous industrial bioprocesses. However, the current understanding about the response mechanisms of A. niger toward ethanol stress remains quite limited. Here, we first applied a cell growth assay to test the ethanol tolerance of A. niger strain ES4, which was isolated from the wall near a chimney of an ethanol tank of a petroleum company, and found that it was capable of growing in 5% (v/v) ethanol to 30% of the ethanol‐free control level. Subsequently, the metabolic responses of this strain toward ethanol were investigated using untargeted metabolomics, which revealed the elevated levels of triacylglycerol (TAG) in the extracellular components, and of diacylglycerol, TAG, and hydroxy‐TAG in the intracellular components. Lastly, stable isotope labeling mass spectrometry with ethanol‐d6 showed altered isotopic patterns of molecular ions of lipids in the ethanol‐d6 samples, compared with the nonlabeled ethanol controls, suggesting the ability of A. niger ES4 to utilize ethanol as a carbon source. Together, the studies revealed the upregulation of glycerolipid metabolism and ethanol utilization pathway as novel response mechanisms of A. niger ES4 toward ethanol stress, thereby underlining the utility of untargeted metabolomics and the overall approaches as tools for elucidating new biological insights.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wimonsiri Kongchai
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Jittra Piapukiew
- Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|