1
|
Almeida LC, Zeferino JF, Branco C, Squillaci G, Morana A, Santos R, Ihalainen P, Sobhana L, Correia JP, Viana AS. Polynorepinephrine and polydopamine-bacterial laccase coatings for phenolic amperometric biosensors. Bioelectrochemistry 2025; 161:108826. [PMID: 39321496 DOI: 10.1016/j.bioelechem.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The successful fabrication of biosensors is greatly limited by the immobilization of their bioreceptor, thus we propose a facile and reproducible two-step method to modify graphite electrodes with a bacterial laccase, relying on a fast and controllable potentiostatic process to coat graphite surfaces with biomolecule-compatible thin films of polynorepinephrine (ePNE) and polydopamine (ePDA). Both polymers, synthesized with a similar thickness, were functionalized with bacterial laccase, displaying distinct electrochemical transducing behaviours at pH 5.0 and 7.0. ePNE layer enables adequate electron transfer of anionic and cationic species in acidic and neutral media, whereas transduction across ePDA strongly depends on pH and redox probe charge. ePNE stands out by improving the amperometric responses of the biosensing interface towards a phenolic acid (gallic acid) and a flavonoid (catechin), in respect to ePDA. The optimal graphite/ePNE/laccase interface outperforms biosensing interfaces based on fungal laccases at neutral pH, displaying detection sensitivities of 104 and 14.4 µA cm-2 mM-1for gallic acid and catechin, respectively. The fine synthetic control of the ePNE bio-inspired transduction layer and the use of an alkaliphilic bacterial laccase enabled the construction of an amperometric biosensing interface with extended pH range of polyphenols detection present in food products and agro-industrial waste.
Collapse
Affiliation(s)
- Luís C Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Jorge F Zeferino
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Clara Branco
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Guiseppe Squillaci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Alessandra Morana
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Romana Santos
- Centro de Ciências do Mar e do Ambiente (MARE), ARNET - Aquatic Research Network, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | - Liji Sobhana
- MetGen, Rakentajantie 26, 20780 Kaarina, Finland
| | - Jorge P Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Radveikienė I, Vidžiūnaitė R, Meškys R, Časaitė V. Blue and Yellow Laccases from Alternaria sp. Strain HU: Characterization and Immobilization on Magnetic Nanoparticles. J Fungi (Basel) 2024; 10:559. [PMID: 39194885 DOI: 10.3390/jof10080559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Laccases are important and valuable enzymes with a great potential for biotechnological applications. In this study, two novel laccases, LacHU1 and LacHU2, from Alternaria sp. HU have been purified and characterized. The molecular mass of each isoenzyme was ~66 kDa. LacHU1 laccases was yellow and had no typical blue oxidase spectra and LacHU2 had a blue color and characteristic absorption spectra. The catalytic efficiency of LacHU1 for most substrates was higher than that of LacHU2 laccase. Both isoenzymes effectively oxidize flavonoids. Alternaria sp. laccases were successfully immobilized on magnetic nanoparticles. The thermostability of immobilized laccases increased and optimal pH shifted to more alkaline compared to the free laccases. Potential applications of laccases from Alternaria sp. HU are in the oxidation of flavonoids in cotton or in water treatment processes.
Collapse
Affiliation(s)
- Ingrida Radveikienė
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Sauletekio Av. 7, 10257 Vilnius, Lithuania
| | - Regina Vidžiūnaitė
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Sauletekio Av. 7, 10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Sauletekio Av. 7, 10257 Vilnius, Lithuania
| | - Vida Časaitė
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Sauletekio Av. 7, 10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Fernandes AJ, Shibukawa VP, Prata AMR, Segato F, Dos Santos JC, Ferraz A, Milagres AMF. Using low-shear aerated and agitated bioreactor for producing two specific laccases by trametes versicolor cultures induced by 2,5-xylidine: Process development and economic analysis. BIORESOURCE TECHNOLOGY 2024; 401:130737. [PMID: 38677383 DOI: 10.1016/j.biortech.2024.130737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Laccase isoforms from basidiomycetes exhibit a superior redox potential compared to commercially available laccases obtained from ascomycete fungi, rendering them more reactive toward mono-substituted phenols and polyphenolic compounds. However, basidiomycetes present limitations for large-scale culture in liquid media, restraining the current availability of laccases from this fungal class. To advance laccase production from basidiomycetes, a newly designed 14-L low-shear aerated and agitated bioreactor provided enzyme titers up to 23.5 IU/mL from Trametes versicolor cultures. Produced enzymes underwent ultrafiltration and LC/MS-MS characterization, revealing the predominant production of only two out of the ten laccases predicted in the T. versicolor genome. Process simulation and economic analysis using SuperPro designer® suggested that T. versicolor laccase could be produced at US$ 3.60/kIU in a 200-L/batch enterprise with attractive economic parameters and a payback period of 1.7 years. The study indicates that new bioreactors with plain design help to produce low-cost enzymes from basidiomycetes.
Collapse
Affiliation(s)
- André J Fernandes
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Vinícius P Shibukawa
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Arnaldo M R Prata
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Fernando Segato
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Julio C Dos Santos
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Adriane M F Milagres
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
4
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
5
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
6
|
Khatami SH, Vakili O, Movahedpour A, Ghesmati Z, Ghasemi H, Taheri-Anganeh M. Laccase: Various types and applications. Biotechnol Appl Biochem 2022; 69:2658-2672. [PMID: 34997643 DOI: 10.1002/bab.2313] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Laccase belongs to the polyphenol oxidase family and is very important in removing environmental pollutants due to its structural and functional properties. Recently, the ability of laccase to oxidize phenolic and nonphenolic substances has been considered by many researchers. This enzyme's application scope includes a broad range of chemical processes and industrial usages, such as bioremediation, nanobiotechnology, woodworking industries, bleaching of paper pulp, dyeing in the textile industry, biotechnological uses in food industries, biorefining, detoxification from wastewater, production of organic matter from phenolic and amine substrates, and biofuels. Although filamentous fungi produce large amounts of laccase, high-yield industrial-scale production of laccase is still faced with many problems. At present, researchers are trying to increase the efficiency and productivity and reduce the final price of laccase by finding suitable microorganisms and improving the process of production and purification of laccase. This article reviews the introduction of laccase, its properties, production processes, and the effect of various factors on the enzyme's stability and activity, and some of its applications in various industries.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Liu X, Zain ul Arifeen M, Xue Y, Liu C. Genome-wide characterization of laccase gene family in Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Front Microbiol 2022; 13:923451. [PMID: 36003943 PMCID: PMC9393519 DOI: 10.3389/fmicb.2022.923451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Laccases are ligninolytic enzymes that play a crucial role in various biological processes of filamentous fungi, including fruiting-body formation and lignin degradation. Lignin degradation is a complex process and its degradation in Schizophyllum commune is greatly affected by the availability of oxygen. Here, a total of six putative laccase genes (ScLAC) were identified from the S. commune 20R-7-F01 genome. These genes, which include three typical Cu-oxidase domains, can be classified into three groups based on phylogenetic analysis. ScLAC showed distinct intron-exon structures and conserved motifs, suggesting the conservation and diversity of ScLAC in gene structures. Additionally, the number and type of cis-acting elements, such as substrate utilization-, stress-, cell division- and transcription activation-related cis-elements, varied between ScLAC genes, suggesting that the transcription of laccase genes in S. commune 20R-7-F01 could be induced by different substrates, stresses, or other factors. The SNP analysis of resequencing data demonstrated that the ScLAC of S. commune inhabiting deep subseafloor sediments were significantly different from those of S. commune inhabiting terrestrial environments. Similarly, the large variation of conserved motifs number and arrangement of laccase between subseafloor and terrestrial strains indicated that ScLAC had a diverse structure. The expression of ScLAC5 and ScLAC6 genes was significantly up-regulated in lignin/lignite medium, suggesting that these two laccase genes might be involved in fungal utilization and degradation of lignite and lignin under anaerobic conditions. These findings might help in understanding the function of laccase in white-rot fungi and could provide a scientific basis for further exploring the relationship between the LAC family and anaerobic degradation of lignin by S. commune.
Collapse
Affiliation(s)
| | | | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | |
Collapse
|
8
|
Conversion of lignin-derived 3-methoxycatechol to the natural product purpurogallin using bacterial P450 GcoAB and laccase CueO. Appl Microbiol Biotechnol 2021; 106:593-603. [PMID: 34971410 DOI: 10.1007/s00253-021-11738-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/02/2023]
Abstract
Purpurogallin is a natural benzotropolone extracted from Quercus spp, which has antioxidant, anticancer, and anti-inflammatory properties. Purpurogallin is typically synthesized from pyrogallol using enzymatic or metal catalysts, neither economically feasible nor environmentally friendly. 3-Methoxycatechol (3-MC) is a lignin-derived renewable chemical with the potential to be a substrate for the biosynthesis of purpurogallin. In this study, we designed a pathway to produce purpurogallin from 3-MC. We first characterized four bacterial laccases and identified the laccase CueO from Escherichia coli, which converts pyrogallol to purpurogallin. Then, we used CueO and the P450 GcoAB reported to convert 3-MC to pyrogallol, to construct a method for producing purpurogallin directly from 3-MC. A total of 0.21 ± 0.05 mM purpurogallin was produced from 5 mM 3-MC by whole-cell conversion. This study provides a new method to enable efficient and sustainable synthesis of purpurogallin and offers new insights into lignin valorization. KEY POINTS: • Screening four bacterial laccases for converting pyrogallol to purpurogallin. • Laccase CueO from Escherichia coli presenting the activity for purpurogallin yield. • A novel pathway for converting lignin-derived 3-methoxycatechol to purpurogallin.
Collapse
|
9
|
Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers-Cobalt Phthalocyanine-Laccase for the Detection of p-Coumaric Acid in Phytoproducts. Int J Mol Sci 2021; 22:ijms22179302. [PMID: 34502203 PMCID: PMC8431354 DOI: 10.3390/ijms22179302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present paper developed a new enzymatic biosensor whose support is a screen-printed electrode based on carbon nanofibers modified with cobalt phthalocyanine and laccase (CNF-CoPc-Lac/SPE) to determine the p-coumaric acid (PCA) content by cyclic voltammetry and square wave voltammetry. Sensor modification was achieved by the casting and cross-linking technique, using glutaraldehyde as a reticulation agent. The biosensor’s response showed the PCA redox processes in a very stable and sensitive manner. The calibration curve was developed for the concentration range of p-coumaric acid of 0.1–202.5 μM, using cyclic voltammetry and chronoamperometry. The biosensor yielded optimal results for the linearity range 0.4–6.4 μM and stood out by low LOD and LOQ values, i.e., 4.83 × 10−7 M and 1.61 × 10−6 M, respectively. PCA was successfully determined in three phytoproducts of complex composition. The results obtained by the voltammetric method were compared to the ones obtained by the FTIR method. The amount of p-coumaric acid determined by means of CNF-CoPc-Lac/SPE was close to the one obtained by the standard spectrometric method.
Collapse
|
10
|
Yang LH, Qiao B, Xu QM, Liu S, Yuan Y, Cheng JS. Biodegradation of sulfonamide antibiotics through the heterologous expression of laccases from bacteria and investigation of their potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125815. [PMID: 34492781 DOI: 10.1016/j.jhazmat.2021.125815] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, seven laccase genes from different bacteria were linked with the signal peptides PelB, Lpp or Ompa for heterologous expression in E. coli. The recombinant strains were applied for the removal of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX). The results obtained for different signal peptides did not provide insights into the removal mechanism. The removal ratios of SDZ, SMZ, and SMX obtained with the recombinant strain 6#P at 60 h were around 92.0%, 89.0%, and 88.0%, respectively. The degradation pathways of sulfonamides have been proposed, including SO2 elimination, hydroxylation, oxidation, pyrimidine ring cleavage, and N-S bond cleavage. Different mediators participate in the degradation of antibiotics through different mechanisms, and different antibiotics have different responses to the same mediator. The addition of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) slightly promoted the removal of sulfonamides by most recombinant strains with different signal peptides, especially for the recombinant strain 2#O. The removal of sulfonamides by 1-hydroxybenzotriazole (HBT) varied with the recombinant strains. Syringaldehyde (SA) had a slight inhibitory effect on the removal of sulfonamides, with the most significant effect on strains 7#L and 7#O.
Collapse
Affiliation(s)
- Li-Hua Yang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China.
| | - Song Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ye Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
11
|
Sun Y, Liu ZL, Hu BY, Chen QJ, Yang AZ, Wang QY, Li XF, Zhang JY, Zhang GQ, Zhao YC. Purification and Characterization of a Thermo- and pH-Stable Laccase From the Litter-Decomposing Fungus Gymnopus luxurians and Laccase Mediator Systems for Dye Decolorization. Front Microbiol 2021; 12:672620. [PMID: 34413835 PMCID: PMC8369832 DOI: 10.3389/fmicb.2021.672620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
An extracellular laccase (GLL) was purified from fermentation broth of the litter-decomposing fungus Gymnopus luxurians by four chromatography steps, which resulted in a high specific activity of 118.82 U/mg, purification fold of 41.22, and recovery rate of 42.05%. It is a monomeric protein with a molecular weight of 64 kDa and N-terminal amino acid sequence of AIGPV TDLHI, suggesting that GLL is a typical fungal laccase. GLL demonstrated an optimum temperature range of 55°C-65°C and an optimum pH 2.2 toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). It displayed considerably high thermostability and pH stability with about 63% activity retained after 24 h at 50°C, and 86% activity retained after 24 h at pH 2.2, respectively. GLL was significantly enhanced in the presence of K+, Na+, and Mg2+ ions. It demonstrated K m of 539 μM and k cat /K m of 140 mM-1⋅s-1 toward ABTS at pH 2.2 and 37°C. Acetosyringone (AS) and syringaldehyde (SA) were the optimal mediators of GLL (0.4 U/ml) for dye decolorization with decolorization rates of about 60%-90% toward 11 of the 14 synthetic dyes. The optimum reaction conditions were determined to be mediator concentration of 0.1 mM, temperature range of 25°C -60°C, and pH 4.0. The purified laccase was the first laccase isolated from genus Gymnopus with high thermostability, pH stability, and effective decolorization toward dyes, suggesting that it has potentials for textile and environmental applications.
Collapse
Affiliation(s)
- Yue Sun
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zi-Lu Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Bo-Yang Hu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ai-Zhen Yang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Qiu-Ying Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Xiao-Feng Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Jia-Yan Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yong-Chang Zhao
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
12
|
Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnol Adv 2021; 54:107809. [PMID: 34333091 DOI: 10.1016/j.biotechadv.2021.107809] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022]
Abstract
Development and deployment of commercial biorefineries based on conversion of lignocellulosic biomass into biofuels and bioproducts faces many challenges that must be addressed before they are commercially viable. One of the biggest challenges faced is the efficient and scalable valorization of lignin, one of the three major components of the plant cell wall. Lignin is the most abundant aromatic biopolymer on earth, and its presence hinders the extraction of cellulose and hemicellulose that is essential to biochemical conversion of lignocellulose to fuels and chemicals. There has been a significant amount of work over the past 20 years that has sought to develop innovative processes designed to extract and recycle lignin into valuable compounds and help reduce the overall costs of the biorefinery process. Due to the complex matrix of lignin, which is essential for plant survival, the development of a reliable and efficient lignin conversion technology has been difficult to achieve. One approach that has received significant interest relies on the use of enzymes, notably laccases, a class of multi‑copper green oxidative enzymes that catalyze bond breaking in lignin to produce smaller oligomers. In this review, we first assess the different innovations of lignin valorization using laccases within the context of a biorefinery process, and then assess the latest economical advances that these innovations offered. Finally, we review laccase characterization and optimization, as well as the prospects and bottlenecks of this class of enzymes within the industrial and biorefining sectors.
Collapse
|
13
|
Coria-Oriundo LL, Battaglini F, Wirth SA. Efficient decolorization of recalcitrant dyes at neutral/alkaline pH by a new bacterial laccase-mediator system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112237. [PMID: 33892342 DOI: 10.1016/j.ecoenv.2021.112237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Laccases and laccase-mediator systems (LMS) are versatile catalysts that can oxidize a broad range of substrates coupled to the sole reduction of dioxygen to water. They possess many biotechnological applications in paper, textile, and food industries, bioethanol production, organic synthesis, detection and degradation of pollutants, and biofuel cell development. In particular, bacterial laccases are getting relevance due to their activity in a wide range of pH and temperature and their robustness under harsh conditions. However, the enzyme and the redox mediator's availability and costs limit their large-scale commercial use. Here we demonstrate that β-(10-phenothiazyl)-propionic acid can be used as an efficient and low-cost redox mediator for decolorizing synthetic dyes by the recombinant laccase SilA from Streptomyces ipomoeae produced in E. coli. This new LMS can decolorize more than 80% indigo carmine and malachite green in 1 h at pH = 8.0 and 2 h in tap water (pH = 6.8). Furthermore, it decolorized more than 40% of anthraquinone dye remazol brilliant blue R and 80% of azo dye xylidine ponceau in 5 h at 50 °C, pH 8.0. It supported at least 3 decolorization cycles without losing activity, representing an attractive candidate for a cost-effective and environmentally friendly LMS functional at neutral to alkaline pH.
Collapse
Affiliation(s)
- Lucy L Coria-Oriundo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, INQUIMAE, DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina; Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Lima 25, Perú
| | - Fernando Battaglini
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, INQUIMAE, DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Sonia A Wirth
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA-CONICET-UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina.
| |
Collapse
|
14
|
Sun K, Li S, Si Y, Huang Q. Advances in laccase-triggered anabolism for biotechnology applications. Crit Rev Biotechnol 2021; 41:969-993. [PMID: 33818232 DOI: 10.1080/07388551.2021.1895053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, USA
| |
Collapse
|
15
|
A Hybrid Microbial–Enzymatic Fuel Cell Cathode Overcomes Enzyme Inactivation Limits in Biological Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The construction of optimized biological fuel cells requires a cathode which combines the longevity of a microbial catalyst with the current density of an enzymatic catalyst. Laccase-secreting fungi were grown directly on the cathode of a biological fuel cell to facilitate the exchange of inactive enzymes with active enzymes, with the goal of extending the lifetime of laccase cathodes. Directly incorporating the laccase-producing fungus at the cathode extends the operational lifetime of laccase cathodes while eliminating the need for frequent replenishment of the electrolyte. The hybrid microbial–enzymatic cathode addresses the issue of enzyme inactivation by using the natural ability of fungi to exchange inactive laccases at the cathode with active laccases. Finally, enzyme adsorption was increased through the use of a functionally graded coating containing an optimized ratio of titanium dioxide nanoparticles and single-walled carbon nanotubes. The hybrid microbial–enzymatic fuel cell combines the higher current density of enzymatic fuel cells with the longevity of microbial fuel cells, and demonstrates the feasibility of a self-regenerating fuel cell in which inactive laccases are continuously exchanged with active laccases.
Collapse
|
16
|
Demkiv OM, Gayda GZ, Broda D, Gonchar MV. Extracellular laccase from Monilinia fructicola: isolation, primary characterization and application. Cell Biol Int 2020; 45:536-548. [PMID: 32052524 DOI: 10.1002/cbin.11316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/02/2020] [Indexed: 01/16/2023]
Abstract
Laccases are enzymes belonging to the family of blue copper oxidases. Due to their broad substrate specificity, they are widely used in many industrial processes and environmental bioremediations for removal of a large number of pollutants. During last decades, laccases attracted scientific interest also as highly promising enzymes to be used in bioanalytics. The aim of this study is to obtain a highly purified laccase from an efficient fungal producer and to demonstrate the applicability of this enzyme for analytics and bioremediation. To select the best microbial source of laccase, a screening of fungal strains was carried out and the fungus Monilinia fructicola was chosen as a producer of an extracellular enzyme. Optimal cultivation conditions for the highest yield of laccase were established; the enzyme was purified by a column chromatography and partially characterized. Molecular mass of the laccase subunit was determined to be near 35 kDa; the optimal pH ranges for the highest activity and stability are 4.5-5.0 and 3.0-5.0, respectively; the optimal temperature for laccase activity is 30°C. Laccase preparation was successfully used as a biocatalyst in the amperometric biosensor for bisphenol A assay and in the bioreactor for bioremediation of some xenobiotics.
Collapse
Affiliation(s)
- Olga M Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine
| | - Galina Z Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine
| | - Daniel Broda
- Faculty of Biotechnology, University of Rzeszów, 1 Pigonia Str., 35-310, Rzeszów, Poland
| | - Mykhailo V Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine.,Drohobych Ivan Franko State Pedagogical University, 24 Ivan Franko Str., 82100, Drohobych, Ukraine
| |
Collapse
|
17
|
Goto H, Kanai Y, Yotsui A, Shimokihara S, Shitara S, Oyobiki R, Fujiwara K, Watanabe T, Einaga Y, Matsumoto Y, Miki N, Doi N. Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases. LAB ON A CHIP 2020; 20:852-861. [PMID: 31984406 DOI: 10.1039/c9lc01263j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the development of a micro total analysis system (μTAS) based on electrochemical measurements and dielectrophoretic sorting for screening of NAD(P)-dependent oxidoreductases. In this system, the activity of enzymes immobilized on microbeads, together with their encoding DNA, can be measured with a boron-doped diamond (BDD) electrode in each compartment (∼30 nL) of the microfluidic system. The 30 nL droplets containing microbead-displayed genes of enzymes with higher activity can then be recovered by dielectrophoretic sorting. Previously, we developed the NAD(P)H-measuring device containing the BDD electrode for high-throughput measurement of the activity of NAD(P)-dependent oxidoreductases. In this study, we fabricated an encapsulating device and a droplet-sorting device for nanoliter-size droplets, for the first time, and then combined these three devices to construct a μTAS for directed evolution of NAD(P)-dependent oxidoreductases. We confirmed that this system works by proof-of-principle experiments and successfully applied this system for screening of randomized libraries of NAD-dependent dehydrogenases.
Collapse
Affiliation(s)
- Haruna Goto
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Yuki Kanai
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Arisa Yotsui
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Shota Shimokihara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Shunya Shitara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Ryo Oyobiki
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Takeshi Watanabe
- Department of Electrical Engineering and Electronics, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Yoshinori Matsumoto
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Norihisa Miki
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
18
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
19
|
Expression Profile of Laccase Gene Family in White-Rot Basidiomycete Lentinula edodes under Different Environmental Stresses. Genes (Basel) 2019; 10:genes10121045. [PMID: 31888265 PMCID: PMC6947313 DOI: 10.3390/genes10121045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
Laccases belong to ligninolytic enzymes and play important roles in various biological processes of filamentous fungi, including fruiting-body formation and lignin degradation. The process of fruiting-body development in Lentinula edodes is complex and is greatly affected by environmental conditions. In this paper, 14 multicopper oxidase-encoding (laccase) genes were analyzed in the draft genome sequence of L. edodes strain W1-26, followed by a search of multiple stress-related Cis-elements in the promoter region of these laccase genes, and then a transcription profile analysis of 14 laccase genes (Lelcc) under the conditions of different carbon sources, temperatures, and photoperiods. All laccase genes were significantly regulated by varying carbon source materials. The expression of only two laccase genes (Lelcc5 and Lelcc6) was induced by sodium-lignosulphonate and the expression of most laccase genes was specifically upregulated in glucose medium. Under different temperature conditions, the expression levels of most laccase genes decreased at 39 °C and transcription was significantly increased for Lelcc1, Lelcc4, Lelcc5, Lelcc9, Lelcc12, Lelcc13, and Lelcc14 after induction for 24 h at 10 °C, indicating their involvement in primordium differentiation. Tyrosinase, which is involved in melanin synthesis, was clustered with the same group as Lelcc4 and Lelcc7 in all the different photoperiod treatments. Meanwhile, five laccase genes (Lelcc8, Lelcc9, Lelcc12, Lelcc13, and Lelcc14) showed similar expression profiles to that of two blue light receptor genes (LephrA and LephrB) in the 12 h light/12 h dark treatment, suggesting the involvement of laccase genes in the adaptation process of L. edodes to the changing environment and fruiting-body formation. This study contributes to our understanding of the function of the different Lelcc genes and facilitates the screening of key genes from the laccase gene family for further functional research.
Collapse
|
20
|
Silva-Torres O, Bojorquez-Vazquez L, Simakov A, Vazquez-Duhalt R. Enhanced laccase activity of biocatalytic hybrid copper hydroxide nanocages. Enzyme Microb Technol 2019; 128:59-66. [DOI: 10.1016/j.enzmictec.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
21
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|