1
|
Nie W, He Z, Gu M, Zhou T, Xu J, Zhong J, Yang Y, Zhong W. Improved bacterial cellulose production by Acetobacter oryzoeni MGC-N8819 in tobacco waste extract coupled with nicotine removal by Pseudomonas sp. JY-Q/5∆. Int J Biol Macromol 2025; 293:139336. [PMID: 39740714 DOI: 10.1016/j.ijbiomac.2024.139336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed. In this study, BC production by Acetobacter oryzoeni MGC-N8819 was carried out in four dilutions (5 %, 10 %, 15 %, and 20 %) of TWE. 15 % TWE without nicotine removal resulting in a 3.27 g/L BC production. Considering the inhibitor effect of nicotine on BC synthesis. Pseudomonas sp. JY-Q/5∆, an efficient nicotine-degrading mutant strain without the ability of glucose consumption, was statically co-cultured with MGCN8819, and the BC production was increased to 4.61 g/L after 7 days of cultivation. To eliminate the limitation of insufficient oxygen supply, BC films were harvested on day 7 and cultured for an additional 5 days resulting in a 6.00 g/L final BC production. Remarkably, the co-culture of MGC-N8819 and JY-Q/5∆ improved BC properties in terms of fiber diameter (28 nm), mechanical properties (tensile strength to 67 MPa and elongation at break to 23 %), and thermal stability (the maximum decomposition temperature was 600 °C). This study suggests a valuable strategy for improving BC production using agricultural waste.
Collapse
Affiliation(s)
- Wenxia Nie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Ziliang He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Menjie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Tong Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Jian Xu
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, Zhejiang Province, PR China
| | - Jiajun Zhong
- International Division, Hangzhou High School, Hangzhou 310021, Zhejiang Province, PR China
| | - Yang Yang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, Zhejiang Province, PR China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Li ZJ, Yang DD, Wei ZY, Huang J, Chi YQ, Lu YX, Yin FW. Reduction of nicotine content in tobacco through microbial degradation: research progress and potential applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:144. [PMID: 39695820 DOI: 10.1186/s13068-024-02593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Originally native to South America, tobacco and is now distributed worldwide as a major cash crop. Nicotine is the main harmful component of tobacco leaves, cigarette smoke and tobacco waste, which severely affects not only the flavor of the tobacco leaf, but also causes great damage to human health. As the anti-smoking movement continued to grow since the 1950s, and consumers become more aware of their health and environmental protection, the world tobacco industry has been committed to research, develop and produce low nicotine cigarette products with relatively low risk to human health. Among various approaches, the use of microorganisms to reduce nicotine content and improve tobacco quality has become one of the most promising methods. Due to increasing interest in nicotine-degrading microorganisms (NDMs), this article reviews recent reports on NDMs, nicotine-degrading enzymes, regulation of nicotine-degrading bacterial consortia and optimization of fermentation conditions, aiming to provide updated references for the in-depth research and application of microorganisms for the degradation of nicotine.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, People's Republic of China
| | - Dong-Dong Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, People's Republic of China
| | - Zhi-Yun Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, People's Republic of China
| | - Jie Huang
- School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China
| | - Yi-Qian Chi
- School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China
| | - You-Xuan Lu
- School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China
| | - Feng-Wei Yin
- School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China.
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Yuan X, Luo L, Li X, Lu Y, Chen S, Luan T. Recent advances in the removal of psychoactive substances from aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176156. [PMID: 39255934 DOI: 10.1016/j.scitotenv.2024.176156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Psychoactive substances (PS) have become emerging contaminants in aquatic environments, characterized by their wide distribution, high persistence, bioaccumulation and toxicity. They are difficult to be completely removed in sewage treatment plants due to their high stability under different conditions. The incomplete removal of PS poses a threat to the aquatic animals and can also lead to human health problems through accumulation in the food chain. PS has become a huge burden on global health systems. Therefore, finding an effective technology to completely remove PS has become a "hot topic" for researchers. The methods for removal PS include physical techniques, chemical methods and biological approaches. However, there is still a lack of comprehensive and systematic exploration of these methods. This review aims to address this gap by providing a comprehensive overview of traditional strategies, highlighting recent advancements, and emphasizing the potential of natural aquatic plants in removing trace PS from water environments. Additionally, the degradation mechanisms that occur during the treatment process were discussed and an evaluation of the strengths and weaknesses associated with each method was provided. This work would help researchers in gaining a deeper understanding of the methodologies employed and serve as a reference point for future research endeavors and promoting the sustainable and large-scale application of PS elimination.
Collapse
Affiliation(s)
- Xueting Yuan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaobin Lu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shanshan Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
4
|
Shao Y, Li S, Wang Y, Qiao P, Zhong W. Transcriptomic data reveals an auxiliary detoxification mechanism that alleviates formaldehyde stress in Methylobacterium sp. XJLW. BMC Genomics 2024; 25:1008. [PMID: 39468441 PMCID: PMC11520086 DOI: 10.1186/s12864-024-10923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Methylobacterium sp. XJLW converts formaldehyde into methanol and formic acid via a Cannizzaro reaction in response to environmental formaldehyde stress. Methanol is further assimilated without formaldehyde or formic acid formation, whereas formic acid accumulates without undergoing further metabolism. Synthetic biology-based biotransformation of methanol to generate additional products can potentially achieve carbon neutrality. However, practical applications are hampered by limitations such as formaldehyde tolerance. In this study, we aimed to explore the specific mechanism of strain XJLW in response to formaldehyde stress. Thus, a transcriptomic analysis of XJLW under formaldehyde treatment was performed, revealing changes in the expression of specific genes related to one-carbon metabolism. Central metabolic genes were downregulated, whereas metabolic bypass genes were upregulated to maintain methanol assimilation in XJLW's response to formaldehyde treatment. In total, 100 genes potentially related to methyl transfer were identified. The function of only one gene, RS27765, was similar to that of glyA, which encodes a methyltransferase involved in one-carbon metabolism. The double-mutant strain, lacking RS27765 and glyA, lost its ability to grow in methanol, whereas the single-mutant strain, lacking only one of these genes, still grew in methanol. Co-expression of RS27765 and RS31205 (YscQ/HrcQ type III secretion apparatus protein) enabled Escherichia coli BL21 (DE3) to effectively degrade methanol. Using protein sequence analysis and molecular docking, we proposed a model wherein RS27765 is necessary for cell growth by using methanol generated via formaldehyde cannizzaro reaction. This process enables direct assimilation of methanol without producing formaldehyde and formic acid as intermediate metabolites. The RS27765 gene cluster, in conjunction with metabolic bypass genes, constitutes a novel auxiliary pathway facilitating formaldehyde stress tolerance in the strain.
Collapse
Affiliation(s)
- Yunhai Shao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310059, PR China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Shuang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yanxin Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
5
|
Zhang Z, Mei X, He Z, Xie X, Yang Y, Mei C, Xue D, Hu T, Shu M, Zhong W. Nicotine metabolism pathway in bacteria: mechanism, modification, and application. Appl Microbiol Biotechnol 2022; 106:889-904. [PMID: 35072735 DOI: 10.1007/s00253-022-11763-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
Abstract
Nicotine is a harmful pollutant mainly from the waste of tobacco factories. It is necessary to remove nicotine via high efficient strategies such as bioremediation. So far, an increasing number of nicotine degrading strains have been isolated. However, their degrading efficiency and tolerance to high content nicotine is still not high enough for application in real environment. Thus, the modification of nicotine metabolism pathway is obligated and requires comprehensive molecular insights into whole cell metabolism of nicotine degrading strains. Obviously, the development of multi-omics technology has accelerated the mechanism study on microbial degradation of nicotine and supplied more novel strategy of strains modification. So far, three pathways of nicotine degradation, pyridine pathway, pyrrolidine pathway, and the variant of pyridine and pyrrolidine pathway (VPP pathway), have been clearly identified in bacteria. Muti-omics analysis further revealed specific genome architecture, regulation mechanism, and specific genes or enzymes of three pathways, in different strains. Especially, muti-omics analysis revealed that functional modules coexisted in different genome loci and played additional roles on enhanced degradation efficiency in bacteria. Based on the above discovery, genomic editing strategy becomes more feasible to greatly improve bacterial degrading efficiency of nicotine.
Collapse
Affiliation(s)
- Zeling Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xiaotong Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Ziliang He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xiya Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310009, People's Republic of China.
| | - Chengyu Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Dong Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310009, People's Republic of China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
6
|
Li J, Yi F, Chen G, Pan F, Yang Y, Shu M, Chen Z, Zhang Z, Mei X, Zhong W. Function Enhancement of a Metabolic Module via Endogenous Promoter Replacement for Pseudomonas sp. JY-Q to Degrade Nicotine in Tobacco Waste Treatment. Appl Biochem Biotechnol 2021; 193:2793-2805. [PMID: 34061306 DOI: 10.1007/s12010-021-03566-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Nicotine-degrading Pseudomonas sp. JY-Q is a preferred strain utilized in reconstituted tobacco process for tobacco waste treatment. However, its efficiency of nicotine metabolism still requires to be improved via genomic technology such as promoter engineering based on genomic information. Concerning upstream module of nicotine metabolic pathway, we found that two homologous genes of nicotine dehydrogenase (nicA2 and nox) coexisted in strain JY-Q. However, the transcriptional amount of nox was 20-fold higher than that of nicA2. Thus, the nicA2 expression required improvement. Combinatorial displacement was accomplished for two predicted endogenous promoters, named as PnicA2 and Pnox for nicA2 and nox, respectively. The mutant with Pnox as the promoters for both nicA2 and nox exhibited the best nicotine metabolic capacity which increased by 66% compared to the wild type. These results suggested that endogenous promoter replacement is also feasible for function improvement of metabolic modules and strain enhancement of biodegradation capacity to meet real environment demand.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fengmei Yi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guoqing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Zeyu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeling Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaotong Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
7
|
Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation. Appl Environ Microbiol 2021; 87:e03113-20. [PMID: 33608299 PMCID: PMC8091027 DOI: 10.1128/aem.03113-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria employ secretion systems to translocate proteinaceous effectors from the cytoplasm to the extracellular milieu, thus interacting with the surrounding environment or microniche. It is known that bacteria can benefit from the type VI secretion system (T6SS) by transporting ions to combat reactive oxygen species (ROS). Here, we report that T6SS activities conferred tolerance to nicotine-induced oxidative stress in Pseudomonas sp. strain JY-Q, a highly active nicotine degradation strain isolated from tobacco waste extract. AA098_13375 was identified to encode a dual-functional effector with antimicrobial and anti-ROS activities. Wild-type strain JY-Q grew better than the AA098_13375 deletion mutant in nicotine-containing medium by antagonizing increased intracellular ROS levels. It was, therefore, tentatively designated TseN (type VI secretion system effector for nicotine tolerance), homologs of which were observed to be broadly ubiquitous in Pseudomonas species. TseN was identified as a Tse6-like bacteriostatic toxin via monitoring intracellular NAD+ TseN presented potential antagonism against ROS to fine tune the heavy traffic of nicotine metabolism in strain JY-Q. It is feasible that the dynamic tuning of NAD+ driven by TseN could satisfy demands from nicotine degradation with less cytotoxicity. In this scenario, T6SS involves a fascinating accommodation cascade that prompts constitutive biotransformation of N-heterocyclic aromatics by improving bacterial robustness/growth. In summary, the T6SS in JY-Q mediated resistance to oxidative stress and promoted bacterial fitness via a contact-independent growth competitive advantage, in addition to the well-studied T6SS-dependent antimicrobial activities.IMPORTANCE Mixtures of various pollutants and the coexistence of numerous species of organisms are usually found in adverse environments. Concerning biodegradation of nitrogen-heterocyclic contaminants, the scientific community has commonly focused on screening functional enzymes that transform pollutants into intermediates of attenuated toxicity or for primary metabolism. Here, we identified dual roles of the T6SS effector TseN in Pseudomonas sp. strain JY-Q, which is capable of degrading nicotine. The T6SS in strain JY-Q is able to deliver TseN to kill competitors and provide a growth advantage by a contact-independent pattern. TseN could monitor the intracellular NAD+ level by its hydrolase activity, causing cytotoxicity in competitive rivals but metabolic homeostasis on JY-Q. Moreover, JY-Q could be protected from TseN toxicity by the immunity protein TsiN. In conclusion, we found that TseN with cytotoxicity to bacterial competitors facilitated the nicotine tolerance of JY-Q. We therefore reveal a working model between T6SS and nicotine metabolism. This finding indicates that multiple diversified weapons have been evolved by bacteria for their growth and robustness.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Linlin Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shulan Qian
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuhang Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mingjie Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shanshan Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jie Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lie Xiong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jie Lu
- Department of Infectious Diseases, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Additional Role of Nicotinic Acid Hydroxylase for the Transformation of 3-Succinoyl-Pyridine by Pseudomonas sp. Strain JY-Q. Appl Environ Microbiol 2021; 87:AEM.02740-20. [PMID: 33397698 DOI: 10.1128/aem.02740-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023] Open
Abstract
Nicotine and nicotinic acid (NA) are both considered to be representatives of N-heterocyclic aromatic compounds, and their degradation pathways have been revealed in Pseudomonas species. However, the cooccurrence of these two pathways has only been observed in Pseudomonas sp. strain JY-Q. The nicotine pyrrolidine catabolism pathway of strain JY-Q consists of the functional modules Nic1, Spm, and Nic2. The module enzyme, 3-succinoylpyridine monooxygenase (Spm), catalyzes transformation of 3-succinoyl-pyridine (SP) to 6-hydroxy-3-succinoyl-pyridine (HSP). There exist two homologous but not identical Spm enzymes (namely, Spm1 and Spm2) in JY-Q. However, when spm1 and spm2 were both in-frame deleted, the mutant still grew well in basic salt medium (BSM) supplemented with nicotine as the sole carbon/nitrogen nutrition, suggesting that there exists an alternative pathway responsible for SP catabolism in JY-Q. NicAB, an enzyme accounting for NA hydroxylation, contains reorganized domains similar to those of Spm. When the JY-Q_nicAB gene (nicAB in strain JY-Q) was introduced into another Pseudomonas strain, one that is unable to degrade NA, the resultant recombinant strain exhibited the ability to transform SP to HSP, but without the ability to metabolize NA. Here, we conclude that NicAB in strain JY-Q exhibits an additional role in SP transformation. The other genes in the NA cluster, NicXDFE (Nic2 homolog), then also exhibit a role in subsequent HSP metabolism for energy yield. This finding also suggests that the cooccurrence of nicotine and NA degradation genes in strain JY-Q represents an advantage for JY-Q, making it more effective and flexible for the degradation of nicotine.IMPORTANCE 3-Succinoyl-pyridine (SP) and 6-hydroxy-3-succinoyl-pyridine (HSP) are both valuable chemical precursors to produce insecticides and hypotensive agents. SP and HSP could be renewable through the nicotine microbial degradation pathway, in which 3-succinoylpyridine monooxygenases (Spm) account for transforming SP into HSP in Pseudomonas sp. strain JY-Q. However, when two homologous Spm genes (spm1 and spm2) were knocked out, the mutant retained the ability to degrade nicotine. Thus, in addition to Spm, JY-Q should have an alternative pathway for SP conversion. In this research, we showed that JY-Q_NicAB was responsible for this alternative SP conversion. Both of the primary functions for nicotinic acid dehydrogenation and the additional function for SP metabolism were detected in a recombinant strain harboring JY-Q_NicAB. As a result, both nicotinic acid and nicotine degradation pathways in JY-Q contribute to its remarkable nicotine tolerance and nicotine degradation availability. These findings also provide one more metabolic engineering strategy for accumulation for value-added intermediates.
Collapse
|
9
|
Differential Effects of Homologous Transcriptional Regulators NicR2A, NicR2B1, and NicR2B2 and Endogenous Ectopic Strong Promoters on Nicotine Metabolism in Pseudomonas sp. Strain JY-Q. Appl Environ Microbiol 2021; 87:AEM.02457-20. [PMID: 33187996 DOI: 10.1128/aem.02457-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
Nicotine is a toxic environmental pollutant that widely exists in tobacco wastes. As a natural nicotine-degrading strain, Pseudomonas sp. strain JY-Q still has difficulties degrading high concentrations of nicotine. In this study, we investigated the effect of two homologous transcriptional regulators and endogenous ectopic strong promoters on the efficiency of nicotine degradation. Comparative genomics analysis showed that two homologous transcriptional regulators, namely, NicR2A and NicR2Bs (NicR2B1 plus NicR2B2), can repress nicotine degradation gene expression. When both nicR2A and nicR2Bs were deleted, the resulting mutant JY-Q ΔnicR2A ΔnicR2B1 ΔnicR2B2 (QΔABs) exhibits a 17% higher nicotine degradation efficiency than wild-type JY-Q. Transcriptome sequencing (RNA-seq) analysis showed that the transcription levels (fragments per kilobase per million [FPKM] value) of six genes were higher than those of the other genes in JY-Q. Based on the genetic organization of these genes, three putative promoters, PRS28250 , PRS09985 , and PRS24685 , were identified. Their promoter activities were evaluated by comparing their expression levels using reverse transcriptase quantitative PCR (RT-qPCR). We found that the transcription levels of RS28250, RS09985, and RS24685 were respectively 16.8, 2.6, and 1.6 times higher than that of hspB2, encoding 6-hydroxy-3-succinylpyridine hydroxylase, which is involved in nicotine degradation. Thus, two strong endogenous promoters, namely, PRS28250 and PRS09985 , were selected to replace the original promoters of nic2 gene clusters. The effect of the endogenous ectopic promoter was also related to the position of target gene clusters. When the promoter PRS28250 replaced the promoter of hspB2, the resultant mutant QΔABs-ΔPhspB2 ::PRS28250 exhibited nicotine-degrading efficiency 69% higher than that of JY-Q. This research suggests a feasible strategy to enhance strains' capacity for nicotine degradation by removal of repressing regulatory proteins and replacing the target promoter with strong endogenous ectopic promoters.IMPORTANCE This study evaluated the differential effects of homologous NicR2A and NicR2Bs and endogenous ectopic strong promoters on nicotine metabolism in Pseudomonas sp. strain JY-Q. Based on our differential analysis, a feasible strategy is presented to modify wild-type (WT) strain JY-Q by removing repressing regulatory proteins NicR2A and NicR2Bs and replacing the target promoter with strong endogenous ectopic promoters. The resulting mutants exhibited high tolerance and degradation of nicotine. These findings should be beneficial for improving the pollutant-degrading capacity of natural strains through genomic modification.
Collapse
|
10
|
Li J, Shen M, Chen Z, Pan F, Yang Y, Shu M, Chen G, Jiao Y, Zhang F, Linhardt RJ, Zhong W. Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein Expr Purif 2020; 178:105767. [PMID: 32987121 DOI: 10.1016/j.pep.2020.105767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023]
Abstract
Nicotine contamination in tobacco waste effluent (TWE) from tobacco industry is a serious threat to public health and environment. Microbial degradation is an impending approach to remove nicotine and transform it into some other high value chemicals. Pseudomonas sp. JY-Q exhibits high efficiency of degradation, which can degrade 5 g/L of nicotine within 24 h. In strain JY-Q, we found the co-occurrence of two homologous key enzymes NicA2 and Nox, which catalyze nicotine to N-methylmyosmine, and then to pseudooxylnicotine via simultaneous hydrolysis. In this study, recombinant NicA2 and Nox were expressed in E. coli BL21(DE3) and purified. In vitro, the activity of recombinant NicA2 and Nox was accelerated by adding co-factor NAD+, suggesting that they worked as dehydrogenases. The optimal reaction conditions, substrate affinity, catabolism efficiency, pH-stability and thermal-stability were determined. Nox showed lower efficiency, but at a higher stability level than NicA2. Nox exhibited wider pH range and higher temperature as optimal conditions for the enzymatic reaction. In addition, The Nox showed higher thermo-stability and acid-stability than that of NicA2. The study on enzymatic reaction kinetics showed that Nox had a lower Km and higher substrate affinity than NicA2. These results suggest that Nox plays more significant role than NicA2 in nicotine degradation in TWE, which usually is processed at low pH (4-5) and high temperature (above 40 °C). Genetic engineering is required to enhance the affinity and suitability of NicA2 for an increased additive effect on homologous NicA2 and Nox in strain JY-Q.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mingjie Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Guoqing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yang Jiao
- Technology Center, Hangzhou Liqun Environmental Protection Paper Co., Ltd., Hangzhou, 310018, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
11
|
Li J, Wang J, Li S, Yi F, Xu J, Shu M, Shen M, Jiao Y, Tao F, Zhu C, Zhang H, Qian S, Zhong W. Co-occurrence of functional modules derived from nicotine-degrading gene clusters confers additive effects in Pseudomonas sp. JY-Q. Appl Microbiol Biotechnol 2019; 103:4499-4510. [DOI: 10.1007/s00253-019-09800-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
|