1
|
Li X, Shen J, Chen X, Chen L, Wan S, Qiu X, Chen K, Chen C, Tan H. Humanization of Yeasts for Glycan-Type End-Products. Front Microbiol 2022; 13:930658. [PMID: 35875538 PMCID: PMC9300968 DOI: 10.3389/fmicb.2022.930658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Yeasts are often considered microorganisms for producing human therapeutic glycosylated end-products at an industrial scale. However, the products with non-humanized glycans limited their usage. Therefore, various methods to develop humanized glycosylated end-products have been widely reported in yeasts. To make full use of these methods, it is necessary to summarize the present research to find effective approaches to producing humanized products. The present research focuses on yeast species selection, glycosyltransferase deletion, expression of endoglycosidase, and expression of proteins with galactosylated and or sialylated glycans. Nevertheless, the yeasts will have growth defects with low bioactivity when the key enzymes are deleted. It is necessary to express the corresponding repairing protein. Compared with N-glycosylation, the function of yeast protein O-glycosylation is not well-understood. Yeast proteins have a wide variety of O-glycans in different species, and it is difficult to predict glycosylation sites, which limits the humanization of O-glycosylated yeast proteins. The future challenges include the following points: there are still many important potential yeasts that have never been tried to produce glycosylated therapeutic products. Their glycosylation pathway and related mechanisms for producing humanized glycosylated proteins have rarely been reported. On the other hand, the amounts of key enzymes on glycan pathways in human beings are significantly more than those in yeasts. Therefore, there is still a challenge to produce a large body of humanized therapeutic end-products in suitable yeast species, especially the protein with complex glycans. CRISPR-Cas9 system may provide a potential approach to address the important issue.
Collapse
|
2
|
Moon HY, Sim GH, Kim HJ, Kim K, Kang HA. Assessment of Cre-lox and CRISPR-Cas9 as tools for recycling of multiple-integrated selection markers in Saccharomyces cerevisiae. J Microbiol 2022; 60:18-30. [PMID: 34964942 DOI: 10.1007/s12275-022-1580-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
We evaluated the Cre-lox and CRISPR-Cas9 systems as marker-recycling tools in Saccharomyces cerevisiae recombinants containing multiple-integrated expression cassettes. As an initial trial, we constructed rDNA-nontranscribed spacer- or Ty4-based multiple integration vectors containing the URA3 marker flanked by the loxP sequence. Integrants harboring multiple copies of tHMG1 and NNV-CP expression cassettes were obtained and subsequently transformed with the Cre plasmid. However, the simultaneous pop-out of the expression cassettes along with the URA3 marker hampered the use of Cre-lox as a marker-recycling tool in multiple integrants. As an alternative, we constructed a set of CRISPR-Cas9-gRNA vectors containing gRNA targeted to auxotrophic marker genes. Transformation of multiple integrants of tHMG1 and NNV-CP cassettes by the Cas9-gRNA vector in the presence of the URA3 (stop) donor DNA fragments generated the Ura- transformants retaining multiple copies of the expression cassettes. CRISPR-Cas9-based inactivation led to the recycling of the other markers, HIS3, LEU2, and TRP1, without loss of expression cassettes in the recombinants containing multiple copies of tHMG1, NNV-CP, and SfBGL1 cassettes, respectively. Reuse of the same selection marker in marker-inactivated S. cerevisiae was validated by multiple integrations of the TrEGL2 cassette into the S. cerevisiae strain expressing SfBGL1. These results demonstrate that introducing stop codons into selection marker genes using the CRISPR-Cas9 system with donor DNA fragments is an efficient strategy for markerrecycling in multiple integrants. In particular, the continual reuse of auxotrophic markers would facilitate the construction of a yeast cell factory containing multiple copies of expression cassettes without antibiotic resistance genes.
Collapse
Affiliation(s)
- Hye Yun Moon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gyu Hun Sim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeon Jin Kim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keunpil Kim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Song XG, Han MH, He F, Wang SY, Li CH, Wu GC, Huang ZG, Liu D, Liu FQ, Laborda P, Shi XC. Antifungal Mechanism of Dipicolinic Acid and Its Efficacy for the Biocontrol of Pear Valsa Canker. Front Microbiol 2020; 11:958. [PMID: 32508781 PMCID: PMC7251846 DOI: 10.3389/fmicb.2020.00958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/21/2020] [Indexed: 11/21/2022] Open
Abstract
Valsa pyri is a fatal canker pathogen that causes significant reduction of crop yield in pear orchards. V. pyri invades the trunk phloem, and is difficult to control by chemical treatment. In this work, it was found for the first time that Bacillus subtilis-produced dipicolinic acid (DPA) exhibits antifungal activity against different canker pathogens, including Alteraria alternata, Botryosphaeria dothidea, Rhizoctonia solani, and V. pyri. Growth inhibition of V. pyri was observed at less than 5 mM concentration (pH = 5.6). DPA showed the highest antifungal activity at acidic pH values and in the presence of bivalent metals, such as zinc(II), cobalt(II), and copper(II). Measurement of mRNA expression levels and scanning electron microscope (SEM) observations revealed that DPA causes V. pyri apoptosis via inhibition of chitin biosynthesis and subsequent cell lysis. Interestingly, DPA showed high stability in the pear bark and was able to cross the pear tree bark into the phloem, protecting the internal phases of the pear trunk. In preventive applications, DPA reduced the canker symptoms of V. pyri on Cuigan pear trees by 90%. Taken together, an efficient strategy for the management of V. pyri-caused canker disease was developed using a novel antifungal agent, DPA, with strong antifungal activity and particular diffusion properties.
Collapse
Affiliation(s)
- Xue-Ge Song
- School of Life Sciences, Nantong University, Nantong, China
| | - Ming-Hui Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng He
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Chao-Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gui-Chun Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zi-Gang Huang
- School of Life Sciences, Nantong University, Nantong, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
4
|
Thak EJ, Yoo SJ, Moon HY, Kang HA. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins. FEMS Yeast Res 2020; 20:5721243. [DOI: 10.1093/femsyr/foaa009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Yeasts are prominent hosts for the production of recombinant proteins from industrial enzymes to therapeutic proteins. Particularly, the similarity of protein secretion pathways between these unicellular eukaryotic microorganisms and higher eukaryotic organisms has made them a preferential host to produce secretory recombinant proteins. However, there are several bottlenecks, in terms of quality and quantity, restricting their use as secretory recombinant protein production hosts. In this mini-review, we discuss recent developments in synthetic biology approaches to constructing yeast cell factories endowed with enhanced capacities of protein folding and secretion as well as designed targeted post-translational modification process functions. We focus on the new genetic tools for optimizing secretory protein expression, such as codon-optimized synthetic genes, combinatory synthetic signal peptides and copy number-controllable integration systems, and the advanced cellular engineering strategies, including endoplasmic reticulum and protein trafficking pathway engineering, synthetic glycosylation, and cell wall engineering, for improving the quality and yield of secretory recombinant proteins.
Collapse
Affiliation(s)
- Eun Jung Thak
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Su Jin Yoo
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hye Yun Moon
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun Ah Kang
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|