1
|
Oliveira ACD, Gobato C, Pereira KN, Carvalho MV, Santos JV, Pinho GD, Zumpano CBC, Bastos RG, Kamimura ES. Application of essential oils as natural antimicrobials in lactic acid bacteria contaminating fermentation for the production of organic cachaça. Int J Food Microbiol 2024; 424:110742. [PMID: 38802288 DOI: 10.1016/j.ijfoodmicro.2024.110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Sugarcane-based fermentation is an essential process for different sectors of economic importance, such as the food industry with fermented and distilled beverages. However, this process can suffer from high contamination by wild yeasts and bacteria, especially lactic acid bacteria (LAB). This makes it necessary to use decontamination strategies and search for new methods that have a low environmental impact and contribute to the production of organic products. Among the options, oregano and thyme essential oils stand out for their antibacterial compounds. The aim of this study was to use oregano and thyme essential oils as natural antimicrobials in the alcoholic fermentation of sugar cane juice. Initially, the minimum inhibitory concentration of the essential oils in the fermentation was assessed through turbidity in the sensitivity test, which allowed us to determine which concentrations of essential oils would inhibit the contaminants, 3 morphologically selected LAB strains, as well as assessing the viability of CA-11. For LAB, 3 concentrations of each essential oil were tested, ranging from 0.1 to 0.4 μl/mL, while for CA-11 it was 0.06, to 0.1 μl/mL. The results indicated a maximum total value of essential oils per ml of 0.06 μl. Based on this result, a 24-1 fractional factorial was established, with 8 conditions +3 central points, with 4 variables, oregano essential oil (0, 0.03 and 0.06 μl/ml), thyme (0, 0.03 and 0.06 μl/ml), initial soluble solids (14, 16 and 18°Brix) and initial yeast concentration (2.5, 3 and 3.5 g/l), with the temperature set at 32 °C for a period of 12 h. The results showed that the center point condition with 0.03 μl/ml of oregano EO, 0.03 μl/ml of thyme controlled the proliferation of contaminating bacteria compared to the control condition. In the experimental validation, the treatment with essential oils had a lower final population of LAB (5.95 log) than the final population of the control treatment (6.53 log), and it was also observed that the treatment with EOs had an alcohol production around 3 % higher than the treatment without antimicrobials. The experimental validation phase confirmed the synergistic action of oregano and thyme essential oils in controlling the proliferation of contaminating bacteria. In conclusion, it was possible to determine the synergistic antimicrobial action of essential oils against LAB during alcoholic fermentation based on organic sugar cane.
Collapse
Affiliation(s)
- A C D Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP: 13635-900 Pirassununga, SP, Brazil.
| | - C Gobato
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP: 13635-900 Pirassununga, SP, Brazil
| | - K N Pereira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP: 13635-900 Pirassununga, SP, Brazil.
| | - M V Carvalho
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP: 13635-900 Pirassununga, SP, Brazil.
| | - J V Santos
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP: 13635-900 Pirassununga, SP, Brazil
| | - G D Pinho
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP: 13635-900 Pirassununga, SP, Brazil
| | - C B C Zumpano
- Department of Agroindustrial Technology and Rural Socioeconomics, Federal University of São Carlos, Centro de Ciências Agrárias, Highway Anhanguera, km 174 - SP-330, CEP: 13600-97 Araras, SP, Brazil
| | - R G Bastos
- Department of Agroindustrial Technology and Rural Socioeconomics, Federal University of São Carlos, Centro de Ciências Agrárias, Highway Anhanguera, km 174 - SP-330, CEP: 13600-97 Araras, SP, Brazil
| | - E S Kamimura
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP: 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
2
|
Miklau M, Burn SJ, Eckerstorfer M, Dolezel M, Greiter A, Heissenberger A, Hörtenhuber S, Zollitsch W, Hagen K. Horizon scanning of potential environmental applications of terrestrial animals, fish, algae and microorganisms produced by genetic modification, including the use of new genomic techniques. Front Genome Ed 2024; 6:1376927. [PMID: 38938511 PMCID: PMC11208717 DOI: 10.3389/fgeed.2024.1376927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
With scientific progress and the development of new genomic techniques (NGTs), the spectrum of organisms modified for various purposes is rapidly expanding and includes a wide range of taxonomic groups. An improved understanding of which newly developed products may be introduced into the market and released into the environment in the near and more distant future is of particular interest for policymakers, regulatory authorities, and risk assessors. To address this information need, we conducted a horizon scanning (HS) of potential environmental applications in four groups of organisms: terrestrial animals (excluding insects and applications with gene drives), fish, algae and microorganisms. We applied a formal scoping review methodology comprising a structured search of the scientific literature followed by eligibility screening, complemented by a survey of grey literature, and regulatory websites and databases. In all four groups of organisms we identified a broad range of potential applications in stages of basic as well as advanced research, and a limited number of applications which are on, or ready to be placed on, the market. Research on GM animals including fish is focused on farmed animals and primarily targets traits which increase performance, influence reproduction, or convey resistance against diseases. GM algae identified in the HS were all unicellular, with more than half of the articles concerning biofuel production. GM algae applications for use in the environment include biocontrol and bioremediation, which are also the main applications identified for GM microorganisms. From a risk assessor's perspective these potential applications entail a multitude of possible pathways to harm. The current limited level of experience and limited amount of available scientific information could constitute a significant challenge in the near future, for which risk assessors and competent authorities urgently need to prepare.
Collapse
Affiliation(s)
- Marianne Miklau
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Sarah-Joe Burn
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Eckerstorfer
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Marion Dolezel
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Anita Greiter
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Stefan Hörtenhuber
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Werner Zollitsch
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristin Hagen
- Federal Agency for Nature Conservation, Division Assessment Synthetic Biology/Enforcement Genetic Engineering Act, Bonn, Germany
| |
Collapse
|
3
|
Branco P, Carvalho L, Prista C, Albergaria H. Effect of overexpression of partial TDH1 and TDH2/3 gene sequences in a starter strain of industrial bioethanol fermentation on the Brettanomyces bruxellensis contaminant growth. Lett Appl Microbiol 2023; 76:ovad141. [PMID: 38115640 DOI: 10.1093/lambio/ovad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Selected Saccharomyces cerevisiae strains, such as the commercial Ethanol-Red (ER) strain, are used as starters in the bioethanol industry. Yet, bioethanol fermentations are prone to microbial contaminations, mainly by Brettanomyces bruxellensis and lactic acid bacteria. Chemicals, such as sulphuric acid and antibiotics, are commonly used to combat those contaminations, but they have negative environmental impacts. Recently, ER strain was found to secrete antimicrobial peptides (AMPs) active against B. bruxellensis. Therefore, the partial TDH1 and TDH2/3 genes sequences that codify those AMPs were inserted into the pSR41k plasmid and cloned in ER strains. The relative expression levels (plasmidic/genomic) of those sequences in the respective modified ER strains were quantified by real-time quantitative polimerase chain reaction (RT-qPCR), confirming their overexpression. The effect of the modified strains on B. bruxellensis (Bb) growth was then evaluated during synthetic must (SM) and carob syrup (CS) fermentations, co-inoculated with 105 cells ml-1 of ER and Bb in SM and with 106 of ER and 5 × 103 cells ml-1 of Bb in CS. Results showed that modified ER strains exerted a much higher inhibitory effect against B. bruxellensis (72-fold in SM and 10-fold in CS) than the non-modified ER strain. In those fermentations, 90-100 g l-1 of ethanol was produced in 3-6 days.
Collapse
Affiliation(s)
- Patrícia Branco
- Unit of Bioenergy and Biorefinery, LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Biomedical Research Group (BioRG), School of Engineering, Lusófona University, 1749-024 Lisboa, Portugal
| | - Luísa Carvalho
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Catarina Prista
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Helena Albergaria
- Unit of Bioenergy and Biorefinery, LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
4
|
Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (BETHESDA, MD.) 2023; 13:jkad167. [PMID: 37497616 PMCID: PMC10542562 DOI: 10.1093/g3journal/jkad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Biocontrol of Geosmin Production by Inoculation of Native Microbiota during the Daqu-Making Process. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Geosmin produced by Streptomyces can cause an earthy off-flavor at trace levels, seriously deteriorating the quality of Chinese liquor. Geosmin was detected during the Daqu (Chinese liquor fermentation starter)-making process, which is a multi-species fermentation process in an open system. Here, biocontrol, using the native microbiota present in Daqu making, was used to control the geosmin contamination. Six native strains were obtained according to their inhibitory effects on Streptomyces and then were inoculated into the Daqu fermentation. After inoculation, the content of geosmin decreased by 34.40% (from 7.18 ± 0.13 μg/kg to 4.71 ± 0.30 μg/kg) in the early stage and by 55.20% (from 8.86 ± 1.54 μg/kg to 3.97 ± 0.78 μg/kg) in the late stage. High-throughput sequencing combined with an interaction network revealed that the fungal community played an important role in the early stage and the correlation between Pichia and Streptomyces changed from the original indirect promotion to direct inhibition after inoculation. This study provides an effective strategy for controlling geosmin contamination in Daqu via precisely regulating microbial communities, as well as highlights the potential of biocontrol for controlling off-flavor chemicals at trace levels in complex fermentation systems.
Collapse
|
6
|
Englezos V, Jolly NP, Di Gianvito P, Rantsiou K, Cocolin L. Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Evaluation of the Biocontrol Potential of a Commercial Yeast Starter against Fuel-Ethanol Fermentation Contaminants. FERMENTATION 2022. [DOI: 10.3390/fermentation8050233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactic acid bacteria (LAB) and Brettanomyces bruxellensis are the main contaminants of bioethanol fermentations. Those contaminations affect Saccharomyces cerevisiae performance and reduce ethanol yields and productivity, leading to important economic losses. Currently, chemical treatments such as acid washing and/or antibiotics are used to control those contaminants. However, these control measures carry environmental risks, and more environmentally friendly methods are required. Several S. cerevisiae wine strains were found to secrete antimicrobial peptides (AMPs) during alcoholic fermentation that are active against LAB and B. bruxellensis strains. Thus, in the present study, we investigated if the fuel-ethanol commercial starter S. cerevisiae Ethanol Red (ER) also secretes those AMPs and evaluated its biocontrol potential by performing alcoholic fermentations with mixed-cultures of ER and B. bruxellensis strains and growth assays of LAB in ER pre-fermented supernatants. Results showed that all B. bruxellensis strains were significantly inhibited by the presence of ER, although LAB strains were less sensitive to ER fermentation metabolites. Peptides secreted by ER during alcoholic fermentation were purified by gel-filtration chromatography, and a bioactive fraction was analyzed by ELISA and mass spectrometry. Results confirmed that ER secretes the AMPs previously identified. That bioactive fraction was used to determine minimal inhibitory concentrations (MICs) against several LAB and B. bruxellensis strains. MICs of 1–2 mg/mL were found for B. bruxellensis strains and above 2 mg/mL for LAB. Our study demonstrates that the AMPs secreted by ER can be used as a natural preservative in fuel-ethanol fermentations.
Collapse
|
8
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
9
|
Zhao X, Lian X, Liu Y, Zhou L, Wu B, Fu YV. A Peptide Derived from GAPDH Enhances Resistance to DNA Damage in Saccharomyces cerevisiae Cells. Appl Environ Microbiol 2022; 88:e0219421. [PMID: 34936834 PMCID: PMC8863060 DOI: 10.1128/aem.02194-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Social behaviors do not exist only in higher organisms but are also present in microbes that interact for the common good. Here, we report that budding yeast cells interact with their neighboring cells after exposure to DNA damage. Yeast cells irradiated with DNA-damaging UV light secrete signal peptides that can increase the survival of yeast cells exposed to DNA-damaging stress. The secreted peptide is derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and it induced cell death of a fraction of yeast cells in the group. The data suggest that the GAPDH-derived peptide serves in budding yeast's social interaction in response to DNA-damaging stress. IMPORTANCE Many studies have shown that microorganisms, including bacteria and yeast, display increased tolerance to stress after exposure to the same stressor. However, the mechanism remains unknown. In this study, we report a striking finding that Saccharomyces cerevisiae cells respond to DNA damage by secreting a peptide that facilitates resistance to DNA-damaging stress. Although it has been shown that GAPDH possesses many key functions in cells aside from its well-established role in glycolysis, this study demonstrated that GAPDH is also involved in the social behaviors response to DNA-damaging stress. The study opens the gate to an interesting research field about microbial social activity for adaptation to a harsh environment.
Collapse
Affiliation(s)
- Xi Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xianqiang Lian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu V. Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Wine Spoilage Control: Impact of Saccharomycin on Brettanomyces bruxellensis and Its Conjugated Effect with Sulfur Dioxide. Microorganisms 2021; 9:microorganisms9122528. [PMID: 34946131 PMCID: PMC8705515 DOI: 10.3390/microorganisms9122528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
The yeast Brettanomyces bruxellensis is one of the most dangerous wine contaminants due to the production of phenolic off-flavors such as 4-ethylphenol. This microbial hazard is regularly tackled by addition of sulfur dioxide (SO2). Nevertheless, B. bruxellensis is frequently found at low levels (ca 103 cells/mL) in finished wines. Besides, consumers health concerns regarding the use of sulfur dioxide encouraged the search for alternative biocontrol measures. Recently, we found that Saccharomyces cerevisiae secretes a natural biocide (saccharomycin) that inhibits the growth of different B. bruxellensis strains during alcoholic fermentation. Here we investigated the ability of S. cerevisiae CCMI 885 to prevent B. bruxellensis ISA 2211 growth and 4-ethylphenol production in synthetic and true grape must fermentations. Results showed that B. bruxellensis growth and 4-ethylphenol production was significantly inhibited in both media, although the effect was more pronounced in synthetic grape must. The natural biocide was added to a simulated wine inoculated with 5 × 102 cells/mL of B. bruxellensis, which led to loss of culturability and viability (100% dead cells at day-12). The conjugated effect of saccharomycin with SO2 was evaluated in simulated wines at 10, 12, 13 and 14% (v/v) ethanol. Results showed that B. bruxellensis proliferation in wines at 13 and 14% (v/v) ethanol was completely prevented by addition of 1.0 mg/mL of saccharomycin with 25 mg/L of SO2, thus allowing to significantly reduce the SO2 levels commonly used in wines (150–200 mg/L).
Collapse
|
11
|
Eldarov MA, Mardanov AV. Metabolic Engineering of Wine Strains of Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E964. [PMID: 32825346 PMCID: PMC7565949 DOI: 10.3390/genes11090964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Modern industrial winemaking is based on the use of starter cultures of specialized wine strains of Saccharomyces cerevisiae yeast. Commercial wine strains have a number of advantages over natural isolates, and it is their use that guarantees the stability and reproducibility of industrial winemaking technologies. For the highly competitive wine market with new demands for improved wine quality, it has become increasingly critical to develop new wine strains and winemaking technologies. Novel opportunities for precise wine strain engineering based on detailed knowledge of the molecular nature of a particular trait or phenotype have recently emerged due to the rapid progress in genomic and "postgenomic" studies with wine yeast strains. The review summarizes the current achievements of the metabolic engineering of wine yeast, the results of recent studies and the prospects for the application of genomic editing technologies for improving wine S. cerevisiae strains.
Collapse
Affiliation(s)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
12
|
Conacher CG, Rossouw D, Bauer FFB. Peer pressure: evolutionary responses to biotic pressures in wine yeasts. FEMS Yeast Res 2020; 19:5593956. [PMID: 31626300 DOI: 10.1093/femsyr/foz072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
In the macroscopic world, ecological interactions between multiple species of fauna and flora are recognised as major role-players in the evolution of any particular species. By comparison, research on ecological interactions as a driver of evolutionary adaptation in microbial ecosystems has been neglected. The evolutionary history of the budding yeast Saccharomyces cerevisiae has been extensively researched, providing an unmatched foundation for exploring adaptive evolution of microorganisms. However, in most studies, the habitat is only defined by physical and chemical parameters, and little attention is paid to the impact of cohabiting species. Such ecological interactions arguably provide a more relevant evolutionary framework. Within the genomic phylogenetic tree of S. cerevisiae strains, wine associated isolates form a distinct clade, also matched by phenotypic evidence. This domestication signature in genomes and phenomes suggests that the wine fermentation environment is of significant evolutionary relevance. Data also show that the microbiological composition of wine fermentation ecosystems is dominated by the same species globally, suggesting that these species have co-evolved within this ecosystem. This system therefore presents an excellent model for investigating the origins and mechanisms of interspecific yeast interactions. This review explores the role of biotic stress in the adaptive evolution of wine yeast.
Collapse
Affiliation(s)
- C G Conacher
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| | - D Rossouw
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| | - F F B Bauer
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|