1
|
Martins PA, Bourmaud CL, Luterbacher JS, Agger JW. Glucuronoyl esterases improve cellulose hydrolysis by lignocellulose degrading enzymes and enhance lignin extraction. Int J Biol Macromol 2025; 314:144218. [PMID: 40381790 DOI: 10.1016/j.ijbiomac.2025.144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Glucuronoyl esterases (GEs) catalyze cleavage of ester linkages between lignin and hemicellulose. This study investigates the role of GEs in the conversion of lignocellulosic biomass in combination with a minimal set of monocomponent cellulases (endo-1,4-glucanase, cellobiohydrolases 1 and 2, and beta-glucosidase) and a GH10 endo-xylanase. We clearly demonstrate how these enzymes promote the disassembly of lignocellulose by breaking some of the covalent bonds between lignin and xylan. By cleaving the ester-linked lignin-carbohydrate complexes, we demonstrate enhanced cellulose hydrolysis of untreated lignocellulosic biomass (hardwood, softwood, and cereals). The increase in glucose production from hydrolysis of untreated lignocellulose suggests an improvement in cellulase accessibility to cellulose fibers associated with ester bond cleavage and highlights how GEs complement cellulases and xylanases in breaking down the complex lignocellulosic matrix. Furthermore, we demonstrate how GEs facilitate lignin extraction in mild aldehyde-assisted fractionation, which results in a higher yield of aldehyde-protected lignins, which is desirable for high-value applications. This is the first direct evidence of improve lignin extraction by the action of GEs. GEs are important enzymes for the efficient deconstruction of lignocellulosic biomass and that the integration of GEs with other enzymes may lead to more sustainable and economically viable biomass conversion processes alongside extraction of high-quality lignin.
Collapse
Affiliation(s)
- Pedro A Martins
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads 221, Kgs Lyngby DK-2800, Denmark
| | - Claire L Bourmaud
- Laboratory of Sustainable and Catalytic Processing (LPDC), Institute of Chemicals Sciences and Engineering (ISIC), School of Basic Sciences (SB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing (LPDC), Institute of Chemicals Sciences and Engineering (ISIC), School of Basic Sciences (SB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jane W Agger
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads 221, Kgs Lyngby DK-2800, Denmark.
| |
Collapse
|
2
|
Pentari C, Katsimpouras C, Haon M, Berrin JG, Zerva A, Topakas E. Exploring the synergy between fungal CE15 glucuronoyl esterases and xylanases for lignocellulose saccharification. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:38. [PMID: 40140928 PMCID: PMC11948903 DOI: 10.1186/s13068-025-02639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Lignin-carbohydrate complexes in lignocellulosic biomass act as a barrier to its biodegradation and biotechnological exploitation. Enzymatic dissociation between lignin and hemicellulose is a key process that allows the efficient bioconversion of both polymers. Glucuronoyl esterases of the Carbohydrate Esterase 15 family target the ester linkages between the glucuronic acid of xylan and lignin moieties, assisting enzymatic biodegradation of lignocellulose. RESULTS In this study, two CE15 glucuronoyl esterases from the white-rot fungi Artolenzites elegans and Trametes ljubarskyi were heterologously expressed in Pichia pastoris and biochemically characterized on the model substrate D-glucuronic acid ester with cinnamyl alcohol and a variety of pretreated lignocellulosic biomasses. The pretreatment method was shown to be a determining factor in revealing both the activity of the esterases on lignocellulose and their synergistic relationships with other hemicellulases. AeGE15 and TlGE15 demonstrated activity on pretreated biomass with high hemicellulose and lignin content, increasing saccharification by 57 ± 1 μM and 61 ± 3 μM of xylose equivalents, respectively. Furthermore, the synergy between these CE15 esterases and three xylanases from distinct glycoside hydrolase families (GH10, GH11 and GH30) was investigated on pretreated lignocellulosic samples, highlighting beneficial enzymatic interplays. Pretreated birchwood degradation by AnXyn11 was increased from 6% to approximately 10% by the esterases, based on xylose equivalents of unsubstituted xylooligomers. The GEs also promoted the glucuronoxylanase specificity of TtXyn30A, leading up to three-times higher release in aldouronic acids. Finally, a synergistic effect between AeGE15 and TmXyn10 was observed on pretreated corn bran, increasing xylose and xylotriose release by 27 ± 8% and 55 ± 15%, respectively. CONCLUSIONS Both CE15 esterases promoted biomass saccharification by the xylanases, while there was a prominent effect on the GH30 glucuronoxylanase regarding the release of aldouronic acids. Overall, this study shed some light on the role of CE15 glucuronoyl esterases in the enzymatic biodegradation of plant biomass, particularly its (arabino)glucuronoxylan component, during cooperative activity with xylanases.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15772, Athens, Greece
| | - Constantinos Katsimpouras
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA
| | - Mireille Haon
- INRAE, Aix Marseille Univ., BBF, Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ., BBF, Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Anastasia Zerva
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15772, Athens, Greece.
| |
Collapse
|
3
|
He Y, Liu B, Ouyang X, He M, Hui H, Tang B, Feng L, Ren M, Chen G, Liu G, He X. Whole-Genome Sequencing and Fine Map Analysis of Pholiota nameko. J Fungi (Basel) 2025; 11:112. [PMID: 39997406 PMCID: PMC11856836 DOI: 10.3390/jof11020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Pholiota nameko (T. Ito) S. Ito and S. Imai is an emerging wild mushroom species belonging to the genus Pholiota. Its unique brown-yellow appearance and significant biological activity have garnered increasing attention in recent years. However, there is a relative lack of research on the biological characteristics and genetics of P. nameko, which greatly limits the potential for an in-depth exploration of this mushroom in the research fields of molecular breeding and evolutionary biology. This study aimed to address that gap by employing Illumina and Nanopore sequencing technologies to perform whole-genome sequencing, de novo assembly, and annotation analysis of the P. nameko ZZ1 strain. Utilizing bioinformatics methods, we conducted a comprehensive analysis of the genomic characteristics of this strain and successfully identified candidate genes associated with its mating type, carbohydrate-active enzymes, virulence factors, pan-genome, and drug resistance functions. The genome of P. nameko ZZ1 is 24.58 Mb in size and comprises 33 contigs, with a contig N50 of 2.11 Mb. A hylogenetic analysis further elucidated the genetic relationship between P. nameko and other Pholiota, revealing a high degree of collinearity between P. nameko and ZZ1. In our enzyme analysis, we identified 246 enzymes in the ZZ1 genome, including 68 key carbohydrate-active enzymes (CAZymes), and predicted the presence of 11 laccases, highlighting the strain's strong potential for cellulose degradation. We conducted a pan-genomic analysis of five closely related strains of Pholiota, yielding extensive genomic information. Among these, there were 2608 core genes, accounting for 21.35% of the total genes, and 135 dispensable genes, highlighting significant genetic diversity among Pholiota and further confirming the value of pan-genomic analysis in uncovering species diversity. Notably, while we successfully identified the A-mating-type locus, composed of the homeodomain protein genes HD1 and HD2 in ZZ1, we were unable to obtain the B-mating-type locus due to technical limitations, preventing us from acquiring the pheromone receptor of the B-mating-type. We plan to supplement these data in future studies and explore the potential impact of the B-mating-type locus on the current findings. In summary, the genome data of ZZ1 presented in this study are not only valuable resources for understanding the genetic basis of this species, but also serve as a crucial foundation for subsequent genome-assisted breeding, research into cultivation technology, and the exploration of its nutritional and potential medicinal value.
Collapse
Affiliation(s)
- Yan He
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
| | - Bo Liu
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan’an University, Yan’an 716000, China
| | - Xiaoqi Ouyang
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
| | - Mianyu He
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
| | - Hongyan Hui
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan’an University, Yan’an 716000, China
| | - Bimei Tang
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
| | - Liaoliao Feng
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan’an University, Yan’an 716000, China
| | - Min Ren
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan’an University, Yan’an 716000, China
| | - Guoliang Chen
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan’an University, Yan’an 716000, China
| | - Guangping Liu
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan’an University, Yan’an 716000, China
| | - Xiaolong He
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (X.O.); (M.H.); (H.H.); (B.T.); (L.F.); (M.R.); (G.C.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan’an University, Yan’an 716000, China
| |
Collapse
|
4
|
Zhang P, Long L, Ding S. Insight into lignin-carbohydrate ester change in pretreated corn bran and its enzymatic hydrolysis by three glucuronoyl esterases from Sordaria brevicollis. Int J Biol Macromol 2024; 282:137308. [PMID: 39510460 DOI: 10.1016/j.ijbiomac.2024.137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Lignin-carbohydrate esters (LC-esters) formed by glucuronoarabinoxylan and lignin are a key factor for the recalcitrance of corn bran, understanding LC-esters change during pretreatment and enzymatic hydrolysis by glucuronoyl esterases (GEs) is essential to the sustainable utilization of corn bran. Herein, hydrolysis performances of three GEs, SbGE15A, SbGE15B, and SbGE15C from Sordaria brevicollis with different subclades and modularity, and changes in enzyme-reachable LC-esters during different pretreatments of corn bran have been comprehensively compared. FB enzymes, SbGE15B and SbGE15C showed higher catalytic activity towards model and natural substrates than FA enzyme, SbGE15A. Particularly, SbGE15C harboring carbohydrate-binding module 1 (CBM1) exhibited much superior catalytic performance and synergistic effect with GH10 endo-xylanase EpXYN1 from Eupenicillium parvum on pretreated residues than SbGE15A and SbGE15B without CBM1. Autohydrolysis and DES (ChCl-LA) pretreatment could decrease the content of enzyme-reachable LC-esters and depolymerize its structure, transitioning from Lignin-(Me)GlcA-Xylan to Lignin-(Me)GlcA-XOS, and eventually to Lignin-(Me)GlcA with increasing pretreatment time. These changes consequently cause a decrease in synergy between SbGE15s and EpXYN1 or commercial enzyme cocktails on pretreated residues. The findings provide new insights into significant changes in enzyme-reachable LC-esters depending on the pretreatment method and intensity and the consequent influence of these changes on the catalytic action of GEs.
Collapse
Affiliation(s)
- Peiyu Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
5
|
Gruninger RJ, Kevorkova M, Low KE, Jones DR, Worrall L, McAllister TA, Abbott DW. Structural, Biochemical, and Phylogenetic Analysis of Bacterial and Fungal Carbohydrate Esterase Family 15 Glucuronoyl Esterases in the Rumen. Protein J 2024; 43:910-922. [PMID: 39153129 PMCID: PMC11345330 DOI: 10.1007/s10930-024-10221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
Glucuronoyl esterases (GEs) are carbohydrate active enzymes in carbohydrate esterase family 15 which are involved in the hydrolysis of lignin-carbohydrate complexes. They are encoded by a wide range of aerobic and anaerobic fungi and bacteria inhabiting diverse environments. The rumen microbiome is a complex microbial community with a wide array of enzymes that specialize in deconstructing plant cell wall carbohydrates. Enzymes from the rumen tend to show low similarity to homologues found in other environments, making the rumen microbiome a promising source for the discovery of novel enzymes. Using a combination of phylogenetic and structural analysis, we investigated the structure-function relationship of GEs from the rumen bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens, and from the rumen fungus, Piromyces rhizinflata. All adopt a canonical α/β hydrolase fold and possess a structurally conserved Ser-His-Glu/Asp catalytic triad. Structural variations in the enzymes are localized to loops surrounding the active site. Analysis of the active site structures in these enzymes emphasized the importance of structural plasticity in GEs with non-canonical active site conformations. We hypothesize that interkingdom HGT events may have contributed to the diversity of GEs in the rumen, and this is demonstrated by the phylogenetic and structural similarity observed between rumen bacterial and fungal GEs. This study advances our understanding of the structure-function relationship in glucuronoyl esterases and illuminates the evolutionary dynamics that contribute to enzyme diversity in the rumen microbiome.
Collapse
Affiliation(s)
- Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| | - Maya Kevorkova
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Darryl R Jones
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Liam Worrall
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
6
|
Carbonaro M, Mazurkewich S, Fiorentino G, Lo Leggio L, Larsbrink J. Exploration of three Dyadobacter fermentans enzymes uncovers molecular activity determinants in CE15. Appl Microbiol Biotechnol 2024; 108:335. [PMID: 38747981 PMCID: PMC11096219 DOI: 10.1007/s00253-024-13175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
7
|
Agger JW, Madsen MS, Martinsen LK, Martins PA, Barrett K, Meyer AS. New insights to diversity and enzyme-substrate interactions of fungal glucuronoyl esterases. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12575-4. [PMID: 37256329 DOI: 10.1007/s00253-023-12575-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Glucuronoyl esterases (GEs) (EC 3.1.1.117) catalyze the cleavage of ester-linked lignin-carbohydrate complexes that has high impact on the plant cell wall integrity. The GEs are among the very few known types of hydrolytic enzymes that act at the interface of lignin, or which may potentially interact with lignin itself. In this review, we provide the latest update of the current knowledge on GEs with a special focus on the fungal variants. In addition, we have established the phylogenetic relationship between all GEs and this reveals that the fungal enzymes largely fall into one major branch, together with only a minor subset of bacterial enzymes. About 22% of the fungal proteins carry an additional domain, which is almost exclusively a CBM1 binding domain. We address how GEs may interact with the lignin-side of their substrate by molecular docking experiments based on the known structure of the Cerrena unicolor GE (CuGE). The docking studies indicate that there are no direct interactions between the enzyme and the lignin polymer, that the lignin-moiety is facing away from the protein surface and that an elongated carbon-chain between the ester-linkage and the first phenyl of lignin is preferable. Much basic research on these enzymes has been done over the past 15 years, but the next big step forward for these enzymes is connected to application and how these enzymes can facilitate the use of lignocellulose as a renewable resource. KEY POINTS: Fungal GEs are closely related and are sometimes linked to a binding module Molecular docking suggests good accommodation of lignin-like substructures GEs could be among the first expressed enzymes during fungal growth on biomass.
Collapse
Affiliation(s)
- Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark.
| | - Michael Schmidt Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Line Korte Martinsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Pedro Alves Martins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Cai J, Muhammad I, Chen B, Xu P, Li Y, Xu H, Li K. Whole genome sequencing and analysis of Armillaria gallica Jzi34 symbiotic with Gastrodia elata. BMC Genomics 2023; 24:275. [PMID: 37217849 DOI: 10.1186/s12864-023-09384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Armillaria species are plant pathogens, but a few Armillaria species can establish a symbiotic relationship with Gastrodia elata, a rootless and leafless orchid, that is used as a Chinese herbal medicine. Armillaria is a nutrient source for the growth of G. elata. However, there are few reports on the molecular mechanism of symbiosis between Armillaria species and G. elata. The genome sequencing and analysis of Armillaria symbiotic with G. elata would provide genomic information for further studying the molecular mechanism of symbiosis. RESULTS The de novo genome assembly was performed with the PacBio Sequel platform and Illumina NovaSeq PE150 for the A. gallica Jzi34 strain, which was symbiotic with G. elata. Its genome assembly contained ~ 79.9 Mbp and consisted of 60 contigs with an N50 of 2,535,910 bp. There were only 4.1% repetitive sequences in the genome assembly. Functional annotation analysis revealed a total of 16,280 protein coding genes. Compared with the other five genomes of Armillaria, the carbohydrate enzyme gene family of the genome was significantly contracted, while it had the largest set of glycosyl transferase (GT) genes. It also had an expansion of auxiliary activity enzymes AA3-2 gene subfamily and cytochrome P450 genes. The synteny analysis result of P450 genes reveals that the evolutionary relationship of P450 proteins between A. gallica Jzi34 and other four Armillaria was complex. CONCLUSIONS These characteristics may be beneficial for establishing a symbiotic relationship with G. elata. These results explore the characteristics of A. gallica Jzi34 from a genomic perspective and provide an important genomic resource for further detailed study of Armillaria. This will help to further study the symbiotic mechanism between A. gallica and G. elata.
Collapse
Affiliation(s)
- Jinlong Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Ikram Muhammad
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Bilian Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Peng Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yiguo Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
9
|
Wang R, Arioka M. Glucuronoyl esterase facilitates biomass degradation in Neurospora crassa by upregulating the expression of plant biomass-degrading enzymes. J GEN APPL MICROBIOL 2023; 68:278-286. [PMID: 35858815 DOI: 10.2323/jgam.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glucuronoyl esterase (GE) is a promising agent for the delignification of plant biomass since it has been shown to cleave the linkage between xylan and lignin in vitro. In this study, we demonstrate that NcGE, a GE from Neurospora crassa, stimulates plant biomass degradation. In vitro, NcGE synergistically increased the release of reducing sugars from plant biomass when added together with cellulase or xylanase. In vivo, overexpression of NcGE in N. crassa resulted in an increase in xylanolytic activity. Consistently, elevated transcription of genes encoding the major plant biomass degrading-enzymes (PBDEs) was observed in the NcGE overexpression strain. Increased xylanolytic activity and transcription of PDBE genes were largely abolished when the transcription factors clr-1, clr-2, or xlr-1 were deleted. Interestingly, the expression of some PBDE genes was increased when the hydrolysate of plant biomass by NcGE was added to the culture medium. We propose that NcGE boosts the production of PBDEs through the activation of key transcription factors, which is presumably caused by NcGE-mediated generation of hypothetical inducer(s) from plant biomass.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biotechnology, The University of Tokyo
| | - Manabu Arioka
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo
| |
Collapse
|
10
|
|
11
|
Singh G, Kumar S, Afreen S, Bhalla A, Khurana J, Chandel S, Aggarwal A, Arya SK. Laccase mediated delignification of wasted and non-food agricultural biomass: Recent developments and challenges. Int J Biol Macromol 2023; 235:123840. [PMID: 36849073 DOI: 10.1016/j.ijbiomac.2023.123840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Utilization of microbial laccases is considered as the cleaner and target specific biocatalytic mechanism for the recovery of cellulose and hemicelluloses from nonfood and wasted agricultural, lignocellulosic biomass (LCB). The extent of lignin removal by laccase depends on the biochemical composition of biomass and the redox potential (E0) of the biocatalyst. Intensive research efforts are going on all over the world for the recognition of appropriate and easily available agricultural lignocellulosic feedstocks to exploit maximally for the production of value-added bioproducts and biofuels. In such circumstances, laccase can play a major role as a leading biocatalyst and potent substitute for chemical based deconstruction of the lignocellulosic materials. The limited commercialization of laccase at an industrial scale has been feasible due to its full working efficiency mostly expressed in the presence of cost intensive redox mediators only. Although, recently there are some reports that came on the mediator free biocatalysis of enzyme but still not considerably explored and neither understood in depth. The present review will address the various research gaps and shortcomings that acted as the big hurdles before the complete exploitation of laccases at an industrial scale. Further, this article also reveals insights on different microbial laccases and their diverse functional environmental conditions that affect the deconstruction process of LCB.
Collapse
Affiliation(s)
- Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Shiv Kumar
- Department of Microbiology, Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot 151203, Punjab, India
| | - Sumbul Afreen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Aditya Bhalla
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Jyoti Khurana
- Biotechnology Department, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Sanjeev Chandel
- GHG College of Pharmacy, Raikot Road, Ludhiana, -141109, India
| | | | | |
Collapse
|
12
|
Glucuronoyl esterases - enzymes to decouple lignin and carbohydrates and enable better utilization of renewable plant biomass. Essays Biochem 2023; 67:493-503. [PMID: 36651189 PMCID: PMC10154605 DOI: 10.1042/ebc20220155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Glucuronoyl esterases (GEs) are microbial enzymes able to cleave covalent linkages between lignin and carbohydrates in the plant cell wall. GEs are serine hydrolases found in carbohydrate esterase family 15 (CE15), which belongs to the large α/β hydrolase superfamily. GEs have been shown to reduce plant cell wall recalcitrance by hydrolysing the ester bonds found between glucuronic acid moieties on xylan polysaccharides and lignin. In recent years, the exploration of CE15 has broadened significantly and focused more on bacterial enzymes, which are more diverse in terms of sequence and structure to their fungal counterparts. Similar to fungal GEs, the bacterial enzymes are able to improve overall biomass deconstruction but also appear to have less strict substrate preferences for the uronic acid moiety. The structures of bacterial GEs reveal that they often have large inserts close to the active site, with implications for more extensive substrate interactions than the fungal GEs which have more open active sites. In this review, we highlight the recent work on GEs which has predominantly regarded bacterial enzymes, and discuss similarities and differences between bacterial and fungal enzymes in terms of the biochemical properties, diversity in sequence and modularity, and structural variations that have been discovered thus far in CE15.
Collapse
|
13
|
Microbial xylanolytic carbohydrate esterases. Essays Biochem 2022; 67:479-491. [PMID: 36468678 DOI: 10.1042/ebc20220129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Abstract
This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure–function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.
Collapse
|
14
|
Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 2022; 69:2176-2194. [PMID: 34699092 DOI: 10.1002/bab.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Sumaira Shabbir
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabir Ali
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
15
|
Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion. Nat Commun 2022; 13:1449. [PMID: 35304453 PMCID: PMC8933493 DOI: 10.1038/s41467-022-28938-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Glucuronoyl esterases (GEs) are α/β serine hydrolases and a relatively new addition in the toolbox to reduce the recalcitrance of lignocellulose, the biggest obstacle in cost-effective utilization of this important renewable resource. While biochemical and structural characterization of GEs have progressed greatly recently, there have yet been no mechanistic studies shedding light onto the rate-limiting steps relevant for biomass conversion. The bacterial GE OtCE15A possesses a classical yet distinctive catalytic machinery, with easily identifiable catalytic Ser/His completed by two acidic residues (Glu and Asp) rather than one as in the classical triad, and an Arg side chain participating in the oxyanion hole. By QM/MM calculations, we identified deacylation as the decisive step in catalysis, and quantified the role of Asp, Glu and Arg, showing the latter to be particularly important. The results agree well with experimental and structural data. We further calculated the free-energy barrier of post-catalysis dissociation from a complex natural substrate, suggesting that in industrial settings non-catalytic processes may constitute the rate-limiting step, and pointing to future directions for enzyme engineering in biomass utilization. Zong and coworkers combine computational and experimental methods to decipher in detail the mechanism of action of glucuronoyl esterases, enzymes with significant biotechnological potential for decoupling lignin from polysaccharides in biomass.
Collapse
|
16
|
Kmezik C, Krska D, Mazurkewich S, Larsbrink J. Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep 2021; 11:17662. [PMID: 34480044 PMCID: PMC8417218 DOI: 10.1038/s41598-021-96659-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteroidetes are efficient degraders of complex carbohydrates, much thanks to their use of polysaccharide utilization loci (PULs). An integral part of PULs are highly specialized carbohydrate-active enzymes, sometimes composed of multiple linked domains with discrete functions—multicatalytic enzymes. We present the biochemical characterization of a multicatalytic enzyme from a large PUL encoded by the gut bacterium Bacteroides eggerthii. The enzyme, BeCE15A-Rex8A, has a rare and novel architecture, with an N-terminal carbohydrate esterase family 15 (CE15) domain and a C-terminal glycoside hydrolase family 8 (GH8) domain. The CE15 domain was identified as a glucuronoyl esterase (GE), though with relatively poor activity on GE model substrates, attributed to key amino acid substitutions in the active site compared to previously studied GEs. The GH8 domain was shown to be a reducing-end xylose-releasing exo-oligoxylanase (Rex), based on having activity on xylooligosaccharides but not on longer xylan chains. The full-length BeCE15A-Rex8A enzyme and the Rex domain were capable of boosting the activity of a commercially available GH11 xylanase on corn cob biomass. Our research adds to the understanding of multicatalytic enzyme architectures and showcases the potential of discovering novel and atypical carbohydrate-active enzymes from mining PULs.
Collapse
Affiliation(s)
- Cathleen Kmezik
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Daniel Krska
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Scott Mazurkewich
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden. .,Wallenberg Wood Science Center, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
17
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Hameleers L, Penttinen L, Ikonen M, Jaillot L, Fauré R, Terrapon N, Deuss PJ, Hakulinen N, Master ER, Jurak E. Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: a bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:127. [PMID: 34059129 PMCID: PMC8165983 DOI: 10.1186/s13068-021-01976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nowadays there is a strong trend towards a circular economy using lignocellulosic biowaste for the production of biofuels and other bio-based products. The use of enzymes at several stages of the production process (e.g., saccharification) can offer a sustainable route due to avoidance of harsh chemicals and high temperatures. For novel enzyme discovery, physically linked gene clusters targeting carbohydrate degradation in bacteria, polysaccharide utilization loci (PULs), are recognized 'treasure troves' in the era of exponentially growing numbers of sequenced genomes. RESULTS We determined the biochemical properties and structure of a protein of unknown function (PUF) encoded within PULs of metagenomes from beaver droppings and moose rumen enriched on poplar hydrolysate. The corresponding novel bifunctional carbohydrate esterase (CE), now named BD-FAE, displayed feruloyl esterase (FAE) and acetyl esterase activity on simple, synthetic substrates. Whereas acetyl xylan esterase (AcXE) activity was detected on acetylated glucuronoxylan from birchwood, only FAE activity was observed on acetylated and feruloylated xylooligosaccharides from corn fiber. The genomic contexts of 200 homologs of BD-FAE revealed that the 33 closest homologs appear in PULs likely involved in xylan breakdown, while the more distant homologs were found either in alginate-targeting PULs or else outside PUL contexts. Although the BD-FAE structure adopts a typical α/β-hydrolase fold with a catalytic triad (Ser-Asp-His), it is distinct from other biochemically characterized CEs. CONCLUSIONS The bifunctional CE, BD-FAE, represents a new candidate for biomass processing given its capacity to remove ferulic acid and acetic acid from natural corn and birchwood xylan substrates, respectively. Its detailed biochemical characterization and solved crystal structure add to the toolbox of enzymes for biomass valorization as well as structural information to inform the classification of new CEs.
Collapse
Affiliation(s)
- Lisanne Hameleers
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Leena Penttinen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Martina Ikonen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Léa Jaillot
- Architecture Et Fonction Des Macromolécules Biologiques (AFMB), UMR7257 Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), USC1408 Institut National de Recherche Pour L'Agriculture, l'Alimentation Et L'Environnement (INRAE), 13288, Marseille cedex 9, France
| | - Régis Fauré
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nicolas Terrapon
- Architecture Et Fonction Des Macromolécules Biologiques (AFMB), UMR7257 Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), USC1408 Institut National de Recherche Pour L'Agriculture, l'Alimentation Et L'Environnement (INRAE), 13288, Marseille cedex 9, France
| | - Peter J Deuss
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130, Joensuu, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Edita Jurak
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
19
|
Raji O, Arnling Bååth J, Vuong TV, Larsbrink J, Olsson L, Master ER. The coordinated action of glucuronoyl esterase and α-glucuronidase promotes the disassembly of lignin-carbohydrate complexes. FEBS Lett 2021; 595:351-359. [PMID: 33277689 PMCID: PMC8044923 DOI: 10.1002/1873-3468.14019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin–carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α‐glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing α‐glucuronidase with equimolar quantities of TtCE15A, total MeGlcpA released after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%, and 61% to 95%, respectively. Based on the combined TtCE15A and AxyAgu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glucuronoxylan was occupied as LCCs. Notably, insoluble LCC fractions reduced soluble α‐glucuronidase concentrations by up to 70%, whereas reduction in soluble TtCE15A was less than 30%, indicating different tendencies to adsorb onto the LCC substrate.
Collapse
Affiliation(s)
- Olanrewaju Raji
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada
| | - Jenny Arnling Bååth
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada
| | - Johan Larsbrink
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Emma R Master
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
20
|
Fungal Treatment for the Valorization of Technical Soda Lignin. J Fungi (Basel) 2021; 7:jof7010039. [PMID: 33435491 PMCID: PMC7827817 DOI: 10.3390/jof7010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (Polyporus brumalis, Pycnoporus sanguineus and Leiotrametes menziesii) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated. The three fungi could grow on the technical lignin alone, and the growth rate increased when the media were supplemented with glucose or maltose. The proteomic analysis of the culture supernatants after three days of growth revealed the secretion of numerous Carbohydrate-Active Enzymes (CAZymes). The secretomic profiles varied widely between the strains and the presence of technical lignin alone triggered the early secretion of many lignin-acting oxidoreductases. The secretomes were notably rich in glycoside hydrolases and H2O2-producing auxiliary activity enzymes with copper radical oxidases being induced on lignin for all strains. The lignin treatment by fungi modified both the soluble and insoluble lignin fractions. A significant decrease in the amount of soluble higher molar mass compounds was observed in the case of P. sanguineus. This strain was also responsible for the modification of the lower molar mass compounds of the lignin insoluble fraction and a 40% decrease in the thioacidolysis yield. The similarity in the activities of P. sanguineus and P. brumalis in modifying the functional groups of the technical lignin were observed, the results suggest that the lignin has undergone structural changes, or at least changes in its composition, and pave the route for the utilization of filamentous fungi to functionalize technical lignins and produce the enzymes of interest for biorefinery applications.
Collapse
|
21
|
Ernst HA, Mosbech C, Langkilde AE, Westh P, Meyer AS, Agger JW, Larsen S. The structural basis of fungal glucuronoyl esterase activity on natural substrates. Nat Commun 2020; 11:1026. [PMID: 32094331 PMCID: PMC7039992 DOI: 10.1038/s41467-020-14833-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/06/2020] [Indexed: 01/06/2023] Open
Abstract
Structural and functional studies were conducted of the glucuronoyl esterase (GE) from Cerrena unicolor (CuGE), an enzyme catalyzing cleavage of lignin-carbohydrate ester bonds. CuGE is an α/β-hydrolase belonging to carbohydrate esterase family 15 (CE15). The enzyme is modular, comprised of a catalytic and a carbohydrate-binding domain. SAXS data show CuGE as an elongated rigid molecule where the two domains are connected by a rigid linker. Detailed structural information of the catalytic domain in its apo- and inactivated form and complexes with aldouronic acids reveal well-defined binding of the 4-O-methyl-a-D-glucuronoyl moiety, not influenced by the nature of the attached xylo-oligosaccharide. Structural and sequence comparisons within CE15 enzymes reveal two distinct structural subgroups. CuGE belongs to the group of fungal CE15-B enzymes with an open and flat substrate-binding site. The interactions between CuGE and its natural substrates are explained and rationalized by the structural results, microscale thermophoresis and isothermal calorimetry.
Collapse
Affiliation(s)
- Heidi A Ernst
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Caroline Mosbech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark
| | - Annette E Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark
| | - Jane W Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark.
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
22
|
Mazurkewich S, Poulsen JCN, Lo Leggio L, Larsbrink J. Structural and biochemical studies of the glucuronoyl esterase OtCE15A illuminate its interaction with lignocellulosic components. J Biol Chem 2019; 294:19978-19987. [PMID: 31740581 PMCID: PMC6937553 DOI: 10.1074/jbc.ra119.011435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Glucuronoyl esterases (GEs) catalyze the cleavage of ester linkages between lignin and glucuronic acid moieties on glucuronoxylan in plant biomass. As such, GEs represent promising biochemical tools in industrial processing of these recalcitrant resources. However, details on how GEs interact and catalyze degradation of their natural substrates are sparse, calling for thorough enzyme structure-function studies. Presented here is a structural and mechanistic investigation of the bacterial GE OtCE15A. GEs belong to the carbohydrate esterase family 15 (CE15), which is in turn part of the larger α/β-hydrolase superfamily. GEs contain a Ser-His-Asp/Glu catalytic triad, but the location of the catalytic acid in GEs has been shown to be variable, and OtCE15A possesses two putative catalytic acidic residues in the active site. Through site-directed mutagenesis, we demonstrate that these residues are functionally redundant, possibly indicating the evolutionary route toward new functionalities within the family. Structures determined with glucuronate, in both native and covalently bound intermediate states, and galacturonate provide insights into the catalytic mechanism of CE15. A structure of OtCE15A with the glucuronoxylooligosaccharide 23-(4-O-methyl-α-d-glucuronyl)-xylotriose (commonly referred to as XUX) shows that the enzyme can indeed interact with polysaccharides from the plant cell wall, and an additional structure with the disaccharide xylobiose revealed a surface binding site that could possibly indicate a recognition mechanism for long glucuronoxylan chains. Collectively, the results indicate that OtCE15A, and likely most of the CE15 family, can utilize esters of glucuronoxylooligosaccharides and support the proposal that these enzymes work on lignin-carbohydrate complexes in plant biomass.
Collapse
Affiliation(s)
- Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|