1
|
Zubaer A, Wai A, Hausner G. Comparative mitogenomics of Leptographium procerum, Leptographium terebrantis, and Leptographium wingfieldii, an invasive fungal species in Canadian forests. Can J Microbiol 2025; 71:1-13. [PMID: 39666963 DOI: 10.1139/cjm-2024-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Leptographium wingfieldii is a fungal associate of Tomicus piniperda (the pine shoot beetle) and pathogen of pines and this species is an agent of blue stain in sapwood on infected trees. This fungus was first reported from Europe and has been recently introduced to Canadian forests. Ten new mitogenomes have been sequenced and characterized, including seven strains of L. wingfieldii, two strains of L. procerum and one strain of L. terebrantis. The data were combined with other members of the Ophiostomatales collected from NCBI to gain more insight into the genetic diversity, evolution, and systematics of these fungi. The size of the studied mitogenomes of Leptographium species ranged from 41 to 126 kb with the number of potential mobile introns embedded within these mitogenomes ranging from 13 to 45. These data show that introns generate genetic diversity and confirms the contribution of mobile introns in genome expansion in Ophiostomatales fungi. This study also uncovered complex intron arrangements (twintrons) suggesting the potential of mobile introns generating complex ribozymes that may have implications in gene regulation.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Deng Y, Chen G, Bao X, He J, Li Q. Characterization of the complete mitochondrial genome of Mucor indicus Lendn. 1930 (Mucorales: Mucoraceae), isolated from the wine fermentation system. Mitochondrial DNA B Resour 2024; 9:845-849. [PMID: 38939449 PMCID: PMC11210418 DOI: 10.1080/23802359.2024.2371376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Mucor indicus Lendn. 1930 has been widely used in food fermentation; however, its mitochondrial genome characteristics are not well understood. In this study, the complete mitochondrial genome of M. indicus was obtained, which was 61,400 bp in length with a GC content of 33%. The M. indicus mitochondrial genome was found to contain 14 core protein-coding genes, four free-standing ORFs, 18 intronic ORFs, 26 tRNAs, and two rRNA genes. Phylogenetic trees were generated for 25 early-differentiated fungi using the Bayesian inference (BI) method, which demonstrated that M. indicus is closely related to Mucor piriformis. This study provides useful information for the classification and evolution of Mucor species or other early-differentiated fungi.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| |
Collapse
|
3
|
Huang Y, Wang H, Huo S, Lu J, Norvienyeku J, Miao W, Qin C, Liu W. Comparative Mitogenomics Analysis Revealed Evolutionary Divergence among Neopestalotiopsis Species Complex (Fungi: Xylariales). Int J Mol Sci 2024; 25:3093. [PMID: 38542068 PMCID: PMC10970013 DOI: 10.3390/ijms25063093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 11/11/2024] Open
Abstract
The genus Neopestalotiopsis consists of obligate parasites that cause ring spot, scab, and leaf blight diseases in higher plant species. We assembled the three complete mitogenomes for the guava fruit ring spot pathogen, Neopestalotiopsis cubana. The mitogenomes are circular, with sizes of 38,666 bp, 33,846 bp, and 32,593 bp. The comparative analyses with Pestalotiopsis fici showed that N. cubana differs greatly from it in the length of the mitogenomes and the number of introns. Moreover, they showed significant differences in the gene content and tRNAs. The two genera showed little difference in gene skewness and codon preference for core protein-coding genes (PCGs). We compared gene sequencing in the mitogenomes of the order Xylariales and found large-scale gene rearrangement events, such as gene translocations and the duplication of tRNAs. N. cubana shows a unique evolutionary position in the phylum Ascomycota constructed in phylogenetic analyses. We also found a more concentrated distribution of evolutionary pressures on the PCGs of Neopestalotiopsis in the phylum Ascomycota and that they are under little selective pressure compared to other species and are subjected to purifying selection. This study explores the evolutionary dynamics of the mitogenomes of Neopestalotiopsis and provides important support for genetic and taxonomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunxiu Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.H.); (H.W.); (S.H.); (J.L.); (J.N.); (W.M.)
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.H.); (H.W.); (S.H.); (J.L.); (J.N.); (W.M.)
| |
Collapse
|
4
|
Mukhopadhyay J, Wai A, Hausner G. The mitogenomes of Leptographium aureum, Leptographium sp., and Grosmannia fruticeta: expansion by introns. Front Microbiol 2023; 14:1240407. [PMID: 37637121 PMCID: PMC10448965 DOI: 10.3389/fmicb.2023.1240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Many members of the Ophiostomatales are of economic importance as they are bark-beetle associates and causative agents for blue stain on timber and in some instances contribute towards tree mortality. The taxonomy of these fungi has been challenging due to the convergent evolution of many traits associated with insect dispersal and a limited number of morphological characters that happen to be highly pleomorphic. This study examines the mitochondrial genomes for three members of Leptographium sensu lato [Leptographium aureum (also known as Grosmannia aurea), Grosmannia fruticeta (also known as Leptographium fruticetum), and Leptographium sp. WIN(M)1376)]. Methods Illumina sequencing combined with gene and intron annotations and phylogenetic analysis were performed. Results Sequence analysis showed that gene content and gene synteny are conserved but mitochondrial genome sizes were variable: G. fruticeta at 63,821 bp, Leptographium sp. WIN(M)1376 at 81,823 bp and L. aureum at 104,547 bp. The variation in size is due to the number of introns and intron-associated open reading frames. Phylogenetic analysis of currently available mitochondrial genomes for members of the Ophiostomatales supports currently accepted generic arrangements within this order and specifically supports the separation of members with Leptographium-like conidiophores into two genera, with L. aureum grouping with Leptographium and G. fruticeta aligning with Grosmannia. Discussion Mitochondrial genomes are promising sequences for resolving evolutionary relationships within the Ophiostomatales.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Zhang YJ, Fan XP, Li JN, Zhang S. Mitochondrial genome of Cordyceps blackwelliae: organization, transcription, and evolutionary insights into Cordyceps. IMA Fungus 2023; 14:13. [PMID: 37415259 DOI: 10.1186/s43008-023-00118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Cordyceps is a diverse genus of insect pathogenic fungi, with about 180 accepted species, including some well-known ones used as ethnic medicine and/or functional food. Nevertheless, mitogenomes are only available for four members of the genus. The current study reports the mitogenome of Cordyceps blackwelliae, a newly described entomopathogenic fungus. The 42,257-bp mitogenome of the fungus encoded genes typically found in fungal mitogenomes, and a total of 14 introns inserted into seven genes, including cob (1 intron), cox1 (4), cox3 (3), nad1 (1), nad4 (1), nad5 (1), and rnl (3). RNA-Seq analysis revealed differential expression of mitochondrial genes and supported annotations resulting from in silico analysis. There was clear evidence for polycistronic transcription and alternative splicing of mitochondrial genes. Comparison among mitogenomes of five different Cordyceps species (i.e., C. blackwelliae, C. chanhua, C. militaris, C. pruinosa, and C. tenuipes) revealed a high synteny, with mitogenome size expansion correlating with intron insertions. Different mitochondrial protein-coding genes showed variable degrees of genetic differentiation among these species, but they were all under purifying selection. Mitochondrial phylogeny based on either nucleotide or amino acid sequences confirmed the taxonomic position of C. blackwelliae in Cordycipitaceae, clustering together with C. chanhua. This study promotes our understanding of fungal evolution in Cordyceps.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Xiang-Ping Fan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jia-Ni Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Shu Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
6
|
Du W, Giosa D, Wei J, Giuffrè L, Shi G, El Aamri L, D'Alessandro E, Hafidi M, de Hoog S, Romeo O, Huang H. Long-read PacBio genome sequencing of four environmental saprophytic Sporothrix species spanning the pathogenic clade. BMC Genomics 2022; 23:506. [PMID: 35831806 PMCID: PMC9281073 DOI: 10.1186/s12864-022-08736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Sporothrix belongs to the order Ophiostomatales and contains mainly saprobic soil and plant fungi, although pathogenic species capable of causing human infections are also present. The whole-genomes of disease-causing species have already been sequenced and annotated but no comprehensive genomic resources for environmental Sporothrix species are available, thus limiting our understanding of the evolutionary origin of virulence-related genes and pathogenicity. RESULT The genome assembly of four environmental Sporothrix species resulted in genome size of ~ 30.9 Mbp in Sporothrix phasma, ~ 35 Mbp in S. curviconia, ~ 38.7 Mbp in S. protearum, and ~ 39 Mbp in S. variecibatus, with a variable gene content, ranging from 8142 (S. phasma) to 9502 (S. variecibatus). The analysis of mobile genetic elements showed significant differences in the content of transposable elements within the sequenced genomes, with the genome of S. phasma lacking several class I and class II transposons, compared to the other Sporothrix genomes investigated. Moreover, the comparative analysis of orthologous genes shared by clinical and environmental Sporothrix genomes revealed the presence of 3622 orthogroups shared by all species, whereas over 4200 genes were species-specific single-copy gene products. Carbohydrate-active enzyme analysis revealed a total of 2608 protein-coding genes containing single and/or multiple CAZy domains, resulting in no statistically significant differences among pathogenic and environmental species. Nevertheless, some families were not found in clinical species. Furthermore, for each sequenced Sporothrix species, the mitochondrial genomes was assembled in a single circular DNA molecule, ranging from 25,765 bp (S. variecibatus) to 58,395 bp (S. phasma). CONCLUSION In this study, we present four annotated genome assemblies generated using PacBio SMRT sequencing data from four environmental species: S. curviconia, S. phasma, S. protearum and S. variecibatus with the aim to provide a starting point for future comparative genome evolution studies addressing species diversification, ecological/host adaptation and origin of pathogenic lineages within the genus Sporothrix.
Collapse
Affiliation(s)
- Weian Du
- Department of Dermatology and Venereology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Domenico Giosa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Junkang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ge Shi
- Medical Cosmetic and Plastic Surgery Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lamya El Aamri
- Department of Biology, Moulay Ismail University, Zitoune, Meknes, Morocco
| | | | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Zitoune, Meknes, Morocco
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Huaiqiu Huang
- Department of Dermatology and Venereology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Nie Y, Zhao H, Wang Z, Zhou Z, Liu X, Huang B. The Gene Rearrangement, Loss, Transfer, and Deep Intronic Variation in Mitochondrial Genomes of Conidiobolus. Front Microbiol 2021; 12:765733. [PMID: 34858376 PMCID: PMC8632527 DOI: 10.3389/fmicb.2021.765733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
The genus Conidiobolus s.s. was newly delimited from Conidiobolus s.l. In order to gain insight into its mitochondrial genetic background, this study sequenced six mitochondrial genomes of the genus Conidiobolus s.s. These mitogenomes were all composed of circular DNA molecules, ranging from 29,253 to 48,417 bp in size and from 26.61 to 27.90% in GC content. The order and direction for 14 core protein-coding genes (PCGs) were identical, except for the atp8 gene lost in Conidiobolus chlamydosporus, Conidiobolus polyspermus, and Conidiobolus polytocus, and rearranged in the other Conidiobolus s.s. species. Besides, the atp8 gene split the cox1 gene in Conidiobolus taihushanensis. Phylogenomic analysis based on the 14 core PCGs confirmed that all Conidiobolus s.s. species formed a monophyly in the Entomophthoromycotina lineage. The number and length of introns were the main factors contributing to mitogenomic size, and deep variations and potential transfer were detected in introns. In addition, gene transfer occurred between the mitochondrial and nuclear genomes. This study promoted the understanding of the evolution and phylogeny of the Conidiobolus s.s. genus.
Collapse
Affiliation(s)
- Yong Nie
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei, China
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan, China
| | - Heng Zhao
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zimin Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan, China
| | - Zhengyu Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan, China
| | - Xiaoyong Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Zhang S, Bai X, Ren LY, Sun HH, Tang HP, Vaario LM, Xu J, Zhang YJ. Dynamic evolution of eukaryotic mitochondrial and nuclear genomes: a case study in the gourmet pine mushroom Tricholoma matsutake. Environ Microbiol 2021; 23:7214-7230. [PMID: 34587365 DOI: 10.1111/1462-2920.15792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/25/2021] [Indexed: 01/26/2023]
Abstract
Fungi, as eukaryotic organisms, contain two genomes, the mitochondrial genome and the nuclear genome, in their cells. How the two genomes evolve and correlate to each other is debated. Herein, taking the gourmet pine mushroom Tricholoma matsutake as an example, we performed comparative mitogenomic analysis using samples collected from diverse locations and compared the evolution of the two genomes. The T. matsutake mitogenome encodes 49 genes and is rich of repetitive and non-coding DNAs. Six genes were invaded by up to 11 group I introns, with one cox1 intron cox1P372 showing presence/absence dynamics among different samples. Bioinformatic analyses suggested limited or no evidence of mitochondrial heteroplasmy. Interestingly, hundreds of mitochondrial DNA fragments were found in the nuclear genome, with several larger than 500 nt confirmed by PCR assays and read count comparisons, indicating clear evidence of transfer of mitochondrial DNA into the nuclear genome. Nuclear DNA of T. matsutake showed a higher mutation rate than mitochondrial DNA. Furthermore, we found evidence of incongruence between phylogenetic trees derived from mitogenome and nuclear DNA sequences. Together, our results reveal the dynamic genome evolution of the gourmet pine mushroom.
Collapse
Affiliation(s)
- Shu Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xue Bai
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Li-Yuan Ren
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hui-Hui Sun
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hui-Ping Tang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lu-Min Vaario
- Department of Forest Science, University of Helsinki, Helsinki, FI-00014, Finland
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
9
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Zhang S, Zhang YJ. Proposal of a new nomenclature for introns in protein-coding genes in fungal mitogenomes. IMA Fungus 2019; 10:15. [PMID: 32647619 PMCID: PMC7325650 DOI: 10.1186/s43008-019-0015-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Fungal mitochondrial genes are often invaded by group I or II introns, which represent an ideal marker for understanding fungal evolution. A standard nomenclature of mitochondrial introns is needed to avoid confusion when comparing different fungal mitogenomes. Currently, there has been a standard nomenclature for introns present in rRNA genes, but there is a lack of a standard nomenclature for introns present in protein-coding genes. In this study, we propose a new nomenclature system for introns in fungal mitochondrial protein-coding genes based on (1) three-letter abbreviation of host scientific name, (2) host gene name, (3), one capital letter P (for group I introns), S (for group II introns), or U (for introns with unknown types), and (4) intron insertion site in the host gene according to the cyclosporin-producing fungus Tolypocladium inflatum. The suggested nomenclature was proved feasible by naming introns present in mitogenomes of 16 fungi of different phyla, including both basal and higher fungal lineages although minor adjustment of the nomenclature is needed to fit certain special conditions. The nomenclature also had the potential to name plant/protist/animal mitochondrial introns. We hope future studies follow the proposed nomenclature to ensure direct comparison across different studies.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006 China
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006 China
| |
Collapse
|