1
|
Zhang X, Cheng S, Yang J, Lu L, Deng Z, Bian G, Liu T. Metabolic engineering of Glarea lozoyensis for high-level production of pneumocandin B 0. Synth Syst Biotechnol 2025; 10:381-390. [PMID: 39830076 PMCID: PMC11742615 DOI: 10.1016/j.synbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Pneumocandin B0 (PB0) is a lipohexapeptide synthesized by Glarea lozoyensis and serves as the precursor for the widely used antifungal drug caspofungin acetate (Cancidas®). However, the low titer of PB0 results in fermentation and purification costs during caspofungin production, limiting its widespread clinical application. Here, we engineered an efficient PB0-producing strain of G. lozoyensis by systems metabolic engineering strategies, including multi-omics analysis and multilevel metabolic engineering. We overexpressed four rate-limiting enzymes: thioesterase GLHYD, two cytochrome P450s GLP450s, and chorismate synthase GLCS; knocked out two competing pathways responsible for producing 6-methylsalicylic acid and pyranidine E; and overexpressed the global transcriptional activator GLHYP. As a result, the PB0 titer increased by 108.7 % to 2.63 g/L at the shake-flask level through combinatorial strategies. Our study provides valuable insights into achieving high-level production of PB0 and offers general guidance for developing efficient fungal cell factories to produce polyketide synthase-non-ribosomal peptide synthetase hybrid metabolites.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Shu Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China
| | - Jing Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China
| | - Li Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, China
| |
Collapse
|
2
|
Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol 2024; 17:e14359. [PMID: 37885073 PMCID: PMC10832530 DOI: 10.1111/1751-7915.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Invasive fungal infections have increased remarkably, which have become unprecedented concern to human health. However, the effectiveness of current antifungal drugs is limited due to drug resistance and toxic side-effects. It is urgently required to establish the effective biosynthetic strategy for developing novel and safe antifungal molecules economically. Echinocandins become a promising option as a mainstay family of antifungals, due to specifically targeting the fungal specific cell wall. To date, three kinds of echinocandins for caspofungin, anidulafungin, and micafungin, which derived from pneumocandin B0 , echinocandin B, and FR901379, are commercially available in clinic and have shown potential in managing invasive fungal infections in a cost-effective manner. However, current echinocandins-derived precursors all are produced by environmental fungal isolates with long fermentation cycle and low yields, which challenge the production efficacy of these precursors in industry. Therefore, understanding their biosynthetic machinery is of great importance for improving antifungal titres and creating new echinocandins-derived products. With the development of genome-wide sequencing and establishment of gene-editing technology, there are a growing number of reports on echinocandins-derived products and their biosynthetic gene clusters. This review briefly summarizes the discovery and development history of echinocandins, compares their structural characteristics and biosynthetic processes, and sums up existed strategies for improving their production. Moreover, the genomic analysis of related biosynthetic gene clusters of echinocandins is discussed, highlighting the similarities and differences among the clusters. Last, the biosynthetic processes of echinocandins are compared, focusing on the activation and attachment of side-chains and the formation of the hexapeptide core. This review aims to provide insights into the development and production of new echinocandin drugs by modifying the structure of echinocandin-derived precursors and/or optimizing the fermentation processes; and achieve a new microbial chassis for efficient production of echinocandins in heterologous hosts.
Collapse
Affiliation(s)
- Kaili Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Pan Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xinxin Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
3
|
Zhang W, Yi P, Zhou Y, Yuan K, Ji X, Song P. Effect of fatty acids on intracellular pneumocandin B 0 storage in the fermentation of Glarea lozoyensis. BIORESOUR BIOPROCESS 2023; 10:63. [PMID: 38647938 PMCID: PMC10992745 DOI: 10.1186/s40643-023-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/17/2023] [Indexed: 04/25/2024] Open
Abstract
The natural product pneumocandin B0 is the precursor of the antifungal drug caspofungin. To explore the relationship between pneumocandin B0 and oil. We found that the addition of 1 g/L of oil to the fermentation medium is more conducive to the production of pneumocandin B0. The metabolic reaction mechanism was explored using different fatty acids and the results showed that stearic acid and acetic acid increased the total production of pneumocandin B0 by 22.98% and 9.08%, respectively, as well as increasing the content of intracellular lipid droplets. We also analyzed gene expression and pathway differences between the two different fatty acids using transcriptome analyses. The addition of both acetic acid and stearic acid promoted an active pentose phosphate pathway, providing cells with higher intracellular reducing power. We found that the addition of fatty acids can lead to lipid accumulation, and lipid droplets can sequester lipophilic secondary metabolites such as pneumocandin B0 to reduce cell damage. These results provide novel insights into the relationship between pneumocandin B0 biosynthesis and fatty acids in G. lozoyensis. In addition, this study provides important genetic information for improving the yield of pneumocandin B0 through a strategy of metabolic engineering in the future.
Collapse
Affiliation(s)
- Weiting Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210034, Jiangsu, China
| | - Ping Yi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210034, Jiangsu, China
| | - Ying Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210034, Jiangsu, China
| | - Kai Yuan
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, 102209, China
| | - Xiaojun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Rd., Nanjing, 210009, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210034, Jiangsu, China.
| |
Collapse
|
4
|
Niu K, Wu XP, Fu Q, Lang KP, Zou SP, Hu ZC, Liu ZQ, Zheng YG. Effects of lipids and surfactants on the fermentation production of echinocandin B by Aspergillus nidulans. J Appl Microbiol 2021; 131:2849-2860. [PMID: 33987908 DOI: 10.1111/jam.15136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
AIMS Echinocandin B (ECB) is a kind of lipopeptide antifungal antibiotic, as well as the key precursor of antifungal drug Anidulafungin. Its efficient bioproduction plays an important role in promoting the industrial production of Anidulafungin. METHODS AND RESULTS In this study, methyl oleate and Tween 80 were firstly used to enhance the ECB fermentation by Aspergillus nidulans, the results showed that the ECB titre was significantly enhanced with the addition of methyl oleate and Tween 80. Among the lipids, methyl oleate was found to play a pivotal role in increasing the ECB titre to 2123 mg l-1 , which was more than five times higher than that of the control. The addition of Tween 80 in the medium resulted in ECB titre increased to 2584 mg l-1 . The scanning electron microscope (SEM) and N-phenyl-1-naphthylamine (NPN) assay indicated that Tween 80 could influence the cell membrane permeability of A. nidulans, and enhance the intracellular and extracellular substance exchange, therefore lead to the increasing of ECB titre. CONCLUSIONS Methyl oleate and Tween 80 are optimal carbon sources and surfactants for efficient ECB biosynthesis respectively. SIGNIFICANCE AND IMPACT OF THE STUDY Surfactant was used in ECB fermentation for the first time, which provided feasible ideas for optimizing the fermentation process of other fungi.
Collapse
Affiliation(s)
- K Niu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - X P Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Q Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - K P Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - S P Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Z C Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Z Q Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Y G Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
5
|
Xiong H, Liu Y, Xu Q. Effect of sodium dodecyl sulfate on the production of L-isoleucine by the fermentation of Corynebacterium glutamicum. Bioengineered 2020; 11:1124-1136. [PMID: 33084479 PMCID: PMC8291810 DOI: 10.1080/21655979.2020.1831364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/01/2022] Open
Abstract
Corynebacterium glutamicum is a safe and popular industrial microorganism that it is gram-positive bacteria with thick cell walls, which hinder the extracellular secretion of products. Surfactant has good surface or interface activity and can destroy the cell membrane of microorganisms. In this study, the surfactant SDS was used to artificially destroy the cell membrane of Corynebacterium glutamicum, increase the permeability of the cell membrane, and increase the ability of the strain to secrete L-isoleucine. This is the first time that surfactants have been applied to the fermentation of Corynebacterium glutamicum. Results indicated that after optimization, the output of L-isoleucine reached 43.67 g/L, which was 13.01% higher than that without sodium dodecyl sulfate. The yield of the by-products, such as valine, leucine, and alanine, was reduced by 72.30%, 64.30%, 71.70%, respectively. This method can promote the production of L-isoleucine while minimizing the damage of SDS to the strain.
Collapse
Affiliation(s)
- Haibo Xiong
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yunpeng Liu
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, China
- National and Local Joint Engineering Laboratory of Metabolic Control Fermentation Technology, Tianjin, China
| |
Collapse
|
6
|
Wei TY, Wu YJ, Xie QP, Tang JW, Yu ZT, Yang SB, Chen SX. CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Glarea lozoyensis and Its Application in Manipulating gloF. ACS Synth Biol 2020; 9:1968-1977. [PMID: 32786921 DOI: 10.1021/acssynbio.9b00491] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glarea lozoyensis is an important industrial fungus that produces the pneumocandin B0, which is used for the synthesis of antifungal drug caspofungin. However, because of the limitations and complications of traditional genetic tools, G. lozoyensis strain engineering has been hindered. In this study, we established an efficient CRISPR/Cas9-based gene editing tool in G. lozoyensis SIPI1208. With this method, gene mutagenesis efficiency in the target locus can be up to 80%, which enables the rapid gene knockout. According to the reports, GloF and Ap-HtyE, proline hydroxylases involved in pneumocandin and Echinocandin B biosynthesis, respectively, can catalyze the proline to generate different ratios of trans-3-hydroxy-l-proline to trans-4-hydroxy-l-proline. Heterologous expression of Ap-HtyE in G. lozoyensis decreased the ratio of pneumocandin C0 to (pneumocandin B0 + pneumocandin C0) from 33.5% to 11% without the addition of proline to the fermentation medium. Furthermore, the gloF was replaced by ap-htyE to study the production of pneumocandin C0. However, the gene replacement has been hampered by traditional gene tools since gloF and gloG, two contiguous genes indispensable in the biosynthesis of pneumocandins, are cotranscribed into one mRNA. With the CRISPR/Cas9 strategy, ap-htyE was knocked in and successfully replaced gloF, and results showed that the knock-in strain retained the ability to produce pneumocandin B0, but the production of pneumocandin C0 was abolished. Thus, this strain displayed a competitive advantage in the industrial production of pneumocandin B0. In summary, this study showed that the CRISPR/Cas9-based gene editing tool is efficient for manipulating genes in G. lozoyensis.
Collapse
Affiliation(s)
- Teng-Yun Wei
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Yuan-Jie Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Qiu-Ping Xie
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Jia-Wei Tang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Zhi-Tuo Yu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Song-Bai Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Shao-Xin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| |
Collapse
|