1
|
Xing P, Mao R, Zhang G, Li Y, Zhou W, Diao H, Ma R. Secondary metabolites in Cordyceps javanica with insecticidal potential. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106076. [PMID: 39277389 DOI: 10.1016/j.pestbp.2024.106076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Cordyceps javanica has been registered as a fungal insecticide in several countries. However, little is known about whether metabolic toxins are involved in the insecticidal process. In this research, we assessed the insecticidal activity of the fermentation broth of C. javanica. Myzus persicae mortality differed when exposed to the metabolized C. javanica broths at 3 days post fermentation (DPF) and 5 DPF. Comparison of the metabolic fluid at 3 DPF and 5 DPF revealed a key alkaloid, heteratisine, which was found to have insecticidal activity and acetylcholinesterase (AChE) inhibitory activity. Heteratisine has high insecticidal activity against adult M. persicae, the absolute 50% lethal concentration (LC50) was only 0.2272 mg/L. Heteratisine showed high inhibitory activity on AChE with the 50% maximal inhibitory concentration (IC50) of 76.69 μM. Molecular docking and dynamic simulations showed that heteratisine conjugation occurs at the peripheral anionic site (PAS) of the AChE of M. persicae, leading to suppression of enzyme activity. Heteratisine was rarely found in fungal metabolites, which helps us to understand the complex and elaborate insecticidal mechanism of C. javanica.
Collapse
Affiliation(s)
- Peixiang Xing
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Ruixia Mao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Guisen Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yihua Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Wenwen Zhou
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Hongliang Diao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
2
|
Domingues MM, Santos PL, Gêa BCC, Carvalho VR, Oliveira FN, Soliman EP, Silva WM, Zanuncio JC, Santos Junior VC, Wilcken CF. Isolation and molecular characterization of Cordyceps sp. from Bemisia tabaci (Hemiptera: Aleyrodidae) and pathogenic to Glycaspis brimblecombei (Hemiptera: Aphalaridae). BRAZ J BIOL 2024; 84:e253028. [DOI: 10.1590/1519-6984.253028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/05/2022] [Indexed: 03/28/2023] Open
Abstract
Abstract The Brazilian forestry sector stands out for its technology, forestry management practices, social and environmental responsibility and, mainly, for its high productivity and exotic pests can reduce it. The red gum lerp psyllid Glycaspis brimblecombei (Moore, 1964) (Hemiptera: Aphalaridae) is an important pest in Eucalyptus plantations. The parasitoid Psyllaephagus bliteus (Riek, 1962) (Hymenoptera: Encyrtidae), predatory bugs and entomopathogenic fungi such as Beauveria bassiana and Metarhizium anisopliae are the natural enemies and used in the biological control of the red gum lerp psyllid. The use of entomopathogenic fungi against exotic pests is increasing in the forestry sector and the prospecting and identification of fungus isolates is important for integrated pest management. The objective of this work was the isolation and molecular identification of Cordyceps spp. And to evaluate the pathogenicity of isolates, obtained from Bemisia tabaci (Gennadius, 1889) (Hemiptera: Aleyrodidae) adults, against to the red gum lerp psyllid G. brimblecombei. The fungi were isolated from B. tabaci adults found in soybean and tomato crops and molecularly identified. The conidia obtained were suspended in solution with Tween 80 (0.1%) at a concentration of 1.0 × 108 conidia/mL and sprayed on ten G. brimblecombei nymphs per Eucalyptus leaf cut and placed on a hydroretentive gel inside per Petri dishes as a replication. The number of dead insects was quantified, daily, for seven days, and transferred to humid chambers. Cordyceps javanica (LCBPF 11) and C. fumosorosea (LCBPF 12 and LCBPF 63) were identified with a molecular analysis and all isolates were pathogenic to the insects and indicates that they could be used to manage G. brimblecombei and adds to reports that, normally, fungi cause greater mortality on insects of the same order as that from which they were isolated.
Collapse
Affiliation(s)
| | | | | | | | | | - E. P. Soliman
- Suzano Papel e Celulose/Tecnologia Florestal, Brasil
| | | | | | | | | |
Collapse
|
3
|
Lv B, Zhao X, Guo Y, Li S, Sun M. Serine protease CrKP43 interacts with MAPK and regulates fungal development and mycoparasitism in Clonostachys chloroleuca. Microbiol Spectr 2023; 11:e0244823. [PMID: 37831480 PMCID: PMC10715147 DOI: 10.1128/spectrum.02448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycoparasites play important roles in the biocontrol of plant fungal diseases, during which they secret multiple hydrolases such as serine proteases to degrade their fungal hosts. In this study, we demonstrated that the serine protease CrKP43 was involved in C. chloroleuca development and mycoparasitism with the regulation of Crmapk. To the best of our knowledge, it is the first report on the functions and regulatory mechanisms of serine proteases in C. chloroleuca. Our findings will provide new insight into the regulatory mechanisms of serine proteases in mycoparasites and contribute to clarifying the mechanisms underlying mycoparasitism of C. chloroleuca, which will facilitate the development of highly efficient fungal biocontrol agents as well.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Xing P, Diao H, Wang D, Zhou W, Tian J, Ma R. Identification, Pathogenicity, and Culture Conditions of a New Isolate of Cordyceps javanica (Hypocreales: Cordycipitaceae) From Soil. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:98-107. [PMID: 36534984 DOI: 10.1093/jee/toac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 06/17/2023]
Abstract
This study decribes a highly effective insecticidal isolate of Cordyceps javanica (Frieder. & Bally) (Hypocreales: Cordycipitaceae) named IJ-tg19, which was isolated from soil. Spray bioassays were performed with IJ-tg19 on Myzus persicae (Sulzer) (Hemiptera: Aphididae) adults, third-instar nymphs of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), and third-instar larvae of Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) to determine the pathogenicity of the isolate. The corrected mortality rates for all three pests were 100% when the conidia concentration was 1 × 106 conidia/ml, the lowest concentration in this study, and the median survival times (MST) were 4, 4, and 3 d. The MST shortens with increasing conidia concentration. The effects of laboratory culture conditions on the sporulation and growth of the isolate were also studied. This isolate had the greatest conidia production and fastest growth rate on malt extract agar medium at 25°C. The amount of conidia produced had positive correlation to light duration, with the highest production at 24 hr light. The growth of mycelium can adapt to a moderately alkaline environment, but the optimum conidial production occurred at the pH of 7. Our finding and research will be useful in biocontrol programs that are considering using the new isolate of C. javanica against greenhouse pests.
Collapse
Affiliation(s)
- Peixiang Xing
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Hongliang Diao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Di Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Wenwen Zhou
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Jing Tian
- Department of Life Sciences, Lvliang University, Lvliang, 033001, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| |
Collapse
|
5
|
Zou M, Xin B, Sun X, Lin R, Lu J, Qi J, Xie B, Cheng X. URA3 as a Selectable Marker for Disruption and Functional Assessment of PacC Gene in the Entomopathogenic Fungus Isaria javanica. J Fungi (Basel) 2023; 9:jof9010092. [PMID: 36675913 PMCID: PMC9860623 DOI: 10.3390/jof9010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
An effective selection marker is necessary for genetic engineering and functional genomics research in the post-genomic era. Isaria javanica is an important entomopathogenic fungus with a broad host range and prospective biocontrol potentials. Given that no antibiotic marker is available currently in this fungus, developing an effective selection marker is necessary. In this study, by applying overlap PCR and split-marker deletion strategy, combining PEG-mediated protoplasm transformation method, the uridine auxotrophy gene (ura3) in the I. javanica genome was knocked out. Then, using this transformation system, the pH response transcription factor gene (IjpacC) was disrupted successfully. Loss of IjpacC gene results in an obvious decrease in conidial production, but little impact on mycelial growth. The virulence of the ΔIjpacC mutant on caterpillars is similar to that of the wild-type strain. RT-qPCR detection shows that expression level of an acidic-expressed S53 gene (IF1G_06234) in ΔIjpacC mutant is more significantly upregulated than in the wild-type strain during the fungal infection on caterpillars. Our results indicate that a markerless transformation system based upon complementation of uridine auxotrophy is successfully developed in I. javanica, which is useful for exploring gene function and for genetic engineering to enhance biological control potential of the fungus.
Collapse
Affiliation(s)
- Manling Zou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bei Xin
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Sun
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Runmao Lin
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junru Lu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Qi
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (B.X.); (X.C.); Tel.: +86-10-82109546 (B.X.); +86-10-58809696 (X.C.)
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing 100080, China
- Correspondence: (B.X.); (X.C.); Tel.: +86-10-82109546 (B.X.); +86-10-58809696 (X.C.)
| |
Collapse
|
6
|
Wang W, Wang Y, Dong G, Chen F. Development of Cordyceps javanica BE01 with enhanced virulence against Hyphantria cunea using polyethylene glycol-mediated protoplast transformation. Front Microbiol 2022; 13:972425. [PMID: 36118242 PMCID: PMC9478556 DOI: 10.3389/fmicb.2022.972425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cordyceps javanica has promising application prospects as an entomopathogenic fungus with a wide range of hosts. To enhance the virulence of C. javanica, a polyethylene glycol (PEG)-mediated protoplast genetic transformation system was constructed. Strains overexpressing the subtilisin-like protease genes CJPRB and CJPRB1 and the tripeptidyl peptidase gene CJCLN2-1 were constructed with this system, and the effects of these strains on Hyphantria cunea were tested. The aminoglycoside G418 was used at 800 μg ml−1 to screen the transformants. C. javanica hyphae were degraded with an enzyme mixture to obtain protoplasts at 1.31 × 107 protoplasts ml−1. The transformation of 2 μg of DNA into 1,000 protoplasts was achieved with 20% PEG2000, and after 6 h of recovery, the transformation efficiency was 12.33 ± 1.42 transformants μg−1 plasmid. The LT50 values of CJPRB, CJPRB1, and CJCLN2-1-overexpressing C. javanica strains were 1.32-fold, 2.21-fold, and 2.14-fold higher than that of the wild-type (WT) strain, respectively. The three overexpression strains showed no significant differences from the WT strain in terms of colony growth, conidial yield, and conidial germination rate. However, the infection rate of the CJPRB1 strain was faster than that of the WT strain, with infection occurring within 4–5 days. The CJCLN2-1 strain had a significantly higher mortality rate than the WT strain within 4–10 days after infection. A C. javanica genetic transformation system was successfully constructed for the first time, and an overexpression strain exhibited enhanced virulence to H. cunea compared with the WT strain.
Collapse
Affiliation(s)
- Wenxiu Wang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yahong Wang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Guangping Dong
- Key Laboratory of State Forestry Administration on Pine Wilt Disease Prevention and Control, Hefei, China
| | - Fengmao Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- *Correspondence: Fengmao Chen,
| |
Collapse
|
7
|
Oda K, Dunn BM, Wlodawer A. Serine-Carboxyl Peptidases, Sedolisins: From Discovery to Evolution. Biochemistry 2022; 61:1643-1664. [PMID: 35862020 DOI: 10.1021/acs.biochem.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sedolisin is a proteolytic enzyme, listed in the peptidase database MEROPS as a founding member of clan SB, family S53. This enzyme, although active at low pH, was originally shown not to be inhibited by an aspartic peptidase specific inhibitor, S-PI (pepstatin Ac). In this Perspective, the S53 family is described from the moment of original identification to evolution. The representative enzymes of the family are sedolisin, kumamolisin, and TPP-1. They exhibit the following unique features. (1) The fold of the molecule is similar to that of subtilisin, but the catalytic residues consist of a triad, Ser/Glu/Asp, that is unlike the Ser/His/Asp triad of subtilisin. (2) The molecule is expressed as a pro-form composed of the amino-terminal prosegment and the active domain. Additionally, some members of this family have an additional, carboxy-terminal prosegment. (3) Their optimum pH for activity is in the acidic region, not in the neutral to alkaline region where subtilisin is active. (4) Their distribution in nature is very broad across the three kingdoms of life. (5) Some of these enzymes from fungi and bacteria are pathogens to plants. (6) Some of them have significant potential applications for industry. (7) The lack of a TPP-1 gene in human brain is the cause of incurable juvenile neuronal ceroid lipofuscinosis (Batten's disease).
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, United States
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Li X, Yang S, Zhang M, Yang Y, Peng L. Identification of Pathogenicity-Related Effector Proteins and the Role of Piwsc1 in the Virulence of Penicillium italicum on Citrus Fruits. J Fungi (Basel) 2022; 8:jof8060646. [PMID: 35736129 PMCID: PMC9224591 DOI: 10.3390/jof8060646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Blue mold caused by Penicillium italicum is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of P. italicum. Three hundred and seventy-five secreted proteins of P. italicum were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene Piwsc1, a core candidate, was performed by gene knockout. The deletion of Piwsc1 resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of ΔPiwsc1 decreased. The findings provide us with new insights to understand the pathogenesis of P. italicum and develop an effective and sustainable control method for blue mold.
Collapse
|
9
|
Altimira F, Arias-Aravena M, Jian L, Real N, Correa P, González C, Godoy S, Castro JF, Zamora O, Vergara C, Vitta N, Tapia E. Genomic and Experimental Analysis of the Insecticidal Factors Secreted by the Entomopathogenic Fungus Beauveria pseudobassiana RGM 2184. J Fungi (Basel) 2022; 8:253. [PMID: 35330256 PMCID: PMC8952764 DOI: 10.3390/jof8030253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
The entomopathogenic fungus Beauveria pseudobassiana strain RGM 2184 can reach a maximum efficacy of 80% against the quarantine pest Lobesia botrana in field assays. In this study, the RGM 2184 genome was sequenced, and genome mining analyses were performed to predict the factors involved in its insecticidal activity. Additionally, the metabolic profiling of the RMG 2184 culture's supernatants was analyzed by mass spectrometry, and the insecticidal activity from one of these extracts was evaluated in Galleria mellonella larvae. The genome analysis resulted in 114 genes encoding for extracellular enzymes, four biosynthetic gene clusters reported as producers of insecticidal and bactericidal factors (oosporein, beauvericin, desmethylbassianin, and beauveriolide), 20 toxins, and at least 40 undescribed potential biocontrol factors (polyketides and nonribosomal peptides). Comparative genomic analysis revealed that 65-95% of these genes are Beauveria genus-specific. Metabolic profiling of supernatant extracts from RGM 2184 cultures exhibited secondary metabolites such as beauveriolide, oosporein, inflatin C, and bassiatin. However, a number of detected metabolites still remain undescribed. The metabolite extract caused 79% mortality of Galleria mellonella larvae at 28 days. The results of this research lay the groundwork for the study of new insecticidal molecules.
Collapse
Affiliation(s)
- Fabiola Altimira
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Matias Arias-Aravena
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Ling Jian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Nicolas Real
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Pablo Correa
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile;
| | - Sebastián Godoy
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Jean Franco Castro
- Banco de Recursos Genéticos Microbianos, Instituto de Investigaciones Agropecuarias, INIA, Chillán 3800062, Chile;
| | - Olga Zamora
- Laboratorio de Materias Primas y Alimentos, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (O.Z.); (C.V.)
| | - Cristina Vergara
- Laboratorio de Materias Primas y Alimentos, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (O.Z.); (C.V.)
| | - Nancy Vitta
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| | - Eduardo Tapia
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (M.A.-A.); (N.R.); (P.C.); (S.G.); (N.V.); (E.T.)
| |
Collapse
|
10
|
Zhang L, Yue Q, Wang C, Xu Y, Molnár I. Secondary metabolites from hypocrealean entomopathogenic fungi: genomics as a tool to elucidate the encoded parvome. Nat Prod Rep 2021; 37:1164-1180. [PMID: 32211677 DOI: 10.1039/d0np00007h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 2014 up to the third quarter of 2019 Hypocrealean entomopathogenic fungi (HEF) produce a large variety of secondary metabolites (SMs) that are prominent virulence factors or mediate various interactions in the native niches of these organisms. Many of these SMs show insecticidal, immune system modulatory, antimicrobial, cytotoxic and other bioactivities of clinical or agricultural significance. Recent advances in whole genome sequencing technologies and bioinformatics have revealed many biosynthetic gene clusters (BGCs) potentially involved in SM production in HEF. Some of these BGCs are now well characterized, with the structures of the cognate product congeners elucidated, and the proposed biosynthetic functions of key enzymes validated. However, the vast majority of HEF BGCs are still not linked to SM products ("orphan" BGCs), including many clusters that are not expressed (silent) under routine laboratory conditions. Thus, investigations into the encoded parvome (the secondary metabolome predicted from the genome) of HEF allows the discovery of BGCs for known SMs; uncovers novel metabolites based on the BGCs; and catalogues the predicted SM biosynthetic potential of these fungi. Herein, we summarize new developments of the field, and survey the polyketide, nonribosomal peptide, terpenoid and hybrid SM BGCs encoded in the currently available 40 HEF genome sequences. Studying the encoded parvome of HEF will increase our understanding of the multifaceted roles that SMs play in biotic and abiotic interactions and will also reveal biologically active SMs that can be exploited for the discovery of human and veterinary drugs or crop protection agents.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| |
Collapse
|
11
|
Černoša A, Sun X, Gostinčar C, Fang C, Gunde-Cimerman N, Song Z. Virulence Traits and Population Genomics of the Black Yeast Aureobasidium melanogenum. J Fungi (Basel) 2021; 7:jof7080665. [PMID: 34436204 PMCID: PMC8401163 DOI: 10.3390/jof7080665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/22/2022] Open
Abstract
The black yeast-like fungus Aureobasidium melanogenum is an opportunistic human pathogen frequently found indoors. Its traits, potentially linked to pathogenesis, have never been systematically studied. Here, we examine 49 A. melanogenum strains for growth at 37 °C, siderophore production, hemolytic activity, and assimilation of hydrocarbons and human neurotransmitters and report within-species variability. All but one strain grew at 37 °C. All strains produced siderophores and showed some hemolytic activity. The largest differences between strains were observed in the assimilation of hydrocarbons and human neurotransmitters. We show for the first time that fungi from the order Dothideales can assimilate aromatic hydrocarbons. To explain the background, we sequenced the genomes of all 49 strains and identified genes putatively involved in siderophore production and hemolysis. Genomic analysis revealed a fairly structured population of A.melanogenum, raising the possibility that some phylogenetic lineages have higher virulence potential than others. Population genomics indicated that the species is strictly clonal, although more than half of the genomes were diploid. The existence of relatively heterozygous diploids in an otherwise clonal species is described for only the second time in fungi. The genomic and phenotypic data from this study should help to resolve the non-trivial taxonomy of the genus Aureobasidium and reduce the medical hazards of exploiting the biotechnological potential of other, non-pathogenic species of this genus.
Collapse
Affiliation(s)
- Anja Černoša
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Č.); (N.G.-C.)
| | - Xiaohuan Sun
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (X.S.); (C.F.); (Z.S.)
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Č.); (N.G.-C.)
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
- Correspondence: or ; Tel.: +386-1-320-3392
| | - Chao Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (X.S.); (C.F.); (Z.S.)
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Č.); (N.G.-C.)
| | - Zewei Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (X.S.); (C.F.); (Z.S.)
| |
Collapse
|
12
|
Genetic Underpinnings of Host Manipulation by Ophiocordyceps as Revealed by Comparative Transcriptomics. G3-GENES GENOMES GENETICS 2020; 10:2275-2296. [PMID: 32354705 PMCID: PMC7341126 DOI: 10.1534/g3.120.401290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ant-infecting Ophiocordyceps fungi are globally distributed, host manipulating, specialist parasites that drive aberrant behaviors in infected ants, at a lethal cost to the host. An apparent increase in activity and wandering behaviors precedes a final summiting and biting behavior onto vegetation, which positions the manipulated ant in a site beneficial for fungal growth and transmission. We investigated the genetic underpinnings of host manipulation by: (i) producing a high-quality hybrid assembly and annotation of the Ophiocordyceps camponoti-floridani genome, (ii) conducting laboratory infections coupled with RNAseq of O. camponoti-floridani and its host, Camponotus floridanus, and (iii) comparing these data to RNAseq data of Ophiocordyceps kimflemingiae and Camponotus castaneus as a powerful method to identify gene expression patterns that suggest shared behavioral manipulation mechanisms across Ophiocordyceps-ant species interactions. We propose differentially expressed genes tied to ant neurobiology, odor response, circadian rhythms, and foraging behavior may result by activity of putative fungal effectors such as enterotoxins, aflatrem, and mechanisms disrupting feeding behaviors in the ant.
Collapse
|