1
|
Robazza A, Neumann A. Energy recovery from syngas and pyrolysis wastewaters with anaerobic mixed cultures. BIORESOUR BIOPROCESS 2024; 11:76. [PMID: 39066992 PMCID: PMC11283448 DOI: 10.1186/s40643-024-00791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
The anaerobic digestion of aqueous condensate from fast pyrolysis is a promising technology for enhancing carbon and energy recovery from waste. Syngas, another pyrolysis product, could be integrated as a co-substrate to improve process efficiency. However, limited knowledge exists on the co-fermentation of pyrolysis syngas and aqueous condensate by anaerobic cultures and the effects of substrate toxicity. This work investigates the ability of mesophilic and thermophilic anaerobic mixed cultures to co-ferment syngas and the aqueous condensate from either sewage sludge or polyethylene plastics pyrolysis in semi-batch bottle fermentations. It identifies inhibitory concentrations for carboxydotrophic and methanogenic reactions, examines specific component removal and assesses energy recovery potential. The results show successful co-fermentation of syngas and aqueous condensate components like phenols and N-heterocycles. However, the characteristics and load of the aqueous condensates affected process performance and product formation. The toxicity, likely resulting from the synergistic effect of multiple toxicants, depended on the PACs' composition. At 37 °C, concentrations of 15.6 gCOD/gVSS and 7.8 gCOD/gVSS of sewage sludge-derived aqueous condensate inhibited by 50% carboxydotrophic and methanogenic activity, respectively. At 55 °C, loads between 3.9 and 6.8 gCOD/gVSS inhibited by 50% both reactions. Polyethylene plastics condensate showed higher toxicity, with 2.8 gCOD/gVSS and 0.3 gCOD/gVSS at 37 °C decreasing carboxydotrophic and methanogenic rates by 50%. At 55 °C, 0.3 gCOD/gVSS inhibited by 50% CO uptake rates and methanogenesis. Increasing PAC loads reduced methane production and promoted short-chain carboxylates formation. The recalcitrant components in sewage sludge condensate hindered e-mol recovery, while plastics condensate showed high e-mol recoveries despite the stronger toxicity. Even with challenges posed by substrate toxicity and composition variations, the successful conversion of syngas and aqueous condensates highlights the potential of this technology in advancing carbon and energy recovery from anthropogenic waste streams.
Collapse
Affiliation(s)
- Alberto Robazza
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology, KIT, 76131, Karlsruhe, Germany
| | - Anke Neumann
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology, KIT, 76131, Karlsruhe, Germany.
| |
Collapse
|
2
|
Robazza A, Baleeiro FCF, Kleinsteuber S, Neumann A. Two-stage conversion of syngas and pyrolysis aqueous condensate into L-malate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:85. [PMID: 38907325 PMCID: PMC11191387 DOI: 10.1186/s13068-024-02532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Hybrid thermochemical-biological processes have the potential to enhance the carbon and energy recovery from organic waste. This work aimed to assess the carbon and energy recovery potential of multifunctional processes to simultaneously sequestrate syngas and detoxify pyrolysis aqueous condensate (PAC) for short-chain carboxylates production. To evaluate relevant process parameters for mixed culture co-fermentation of syngas and PAC, two identical reactors were run under mesophilic (37 °C) and thermophilic (55 °C) conditions at increasing PAC loading rates. Both the mesophilic and the thermophilic process recovered at least 50% of the energy in syngas and PAC into short-chain carboxylates. During the mesophilic syngas and PAC co-fermentation, methanogenesis was completely inhibited while acetate, ethanol and butyrate were the primary metabolites. Over 90% of the amplicon sequencing variants based on 16S rRNA were assigned to Clostridium sensu stricto 12. During the thermophilic process, on the other hand, Symbiobacteriales, Syntrophaceticus, Thermoanaerobacterium, Methanothermobacter and Methanosarcina likely played crucial roles in aromatics degradation and methanogenesis, respectively, while Moorella thermoacetica and Methanothermobacter marburgensis were the predominant carboxydotrophs in the thermophilic process. High biomass concentrations were necessary to maintain stable process operations at high PAC loads. In a second-stage reactor, Aspergillus oryzae converted acetate, propionate and butyrate from the first stage into L-malate, confirming the successful detoxification of PAC below inhibitory levels. The highest L-malate yield was 0.26 ± 2.2 molL-malate/molcarboxylates recorded for effluent from the mesophilic process at a PAC load of 4% v/v. The results highlight the potential of multifunctional reactors where anaerobic mixed cultures perform simultaneously diverse process roles, such as carbon fixation, wastewater detoxification and carboxylates intermediate production. The recovered energy in the form of intermediate carboxylates allows for their use as substrates in subsequent fermentative stages.
Collapse
Affiliation(s)
- Alberto Robazza
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology - KIT, 76131, Karlsruhe, Germany
| | - Flávio C F Baleeiro
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Anke Neumann
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology - KIT, 76131, Karlsruhe, Germany.
| |
Collapse
|
3
|
Liu Y, Chen L, Duan Y, Li R, Yang Z, Liu S, Li G. Recent progress and prospects for chain elongation of transforming biomass waste into medium-chain fatty acids. CHEMOSPHERE 2024; 355:141823. [PMID: 38552798 DOI: 10.1016/j.chemosphere.2024.141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Chain elongation technology utilises microorganisms in anaerobic digestion to transform waste biomass into medium-chain fatty acids that have greater economic value. This innovative technology expands upon traditional anaerobic digestion methods, requiring abundant substrates that serve as electron donors and acceptors, and inoculating microorganisms with chain elongation functions. While this process may result in the production of by-products and elicit competitive responses, toxicity suppression of microorganisms by substrates and products remains a significant obstacle to the industrialisation of chain elongation technology. This study provides a comprehensive overview of existing research on widely employed electron donors and their synthetic reactions, competitive reactions, inoculum selection, toxicity inhibition of substrates and products, and increased chain elongation approaches. Additionally, it presents actionable recommendations for future research and development endeavours in this domain, intending to inspire and guide researchers in advancing the frontiers of chain elongation technology.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China.
| | - Long Chen
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Yacong Duan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| |
Collapse
|
4
|
García-Casado S, Muñoz R, Lebrero R. Enrichment of a mixed syngas-converting culture for volatile fatty acids and methane production. BIORESOURCE TECHNOLOGY 2024; 400:130646. [PMID: 38556063 DOI: 10.1016/j.biortech.2024.130646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/02/2024]
Abstract
The present study evaluated the production potential of CH4, carboxylic acids and alcohols from a mixed culture enriched using synthetic syngas. The influence of syngas concentration on the microbial community and products productivity and selectivity was investigated. The results demonstrated the enrichment of a mesophilic mixed culture capable of converting CO and H2 mainly to CH4 and acetate, along with butyrate. The selectivity values showed that acetate production was enhanced during the first cycle in all conditions tested (up to 20 %), while CH4 was the main product generated during following cycles. Concretely, CH4 selectivity remained unaffected by syngas concentration, reaching a stable value of 41.6 ± 2.0 %. On the other hand, butyrate selectivity was only representative at the highest syngas concentration and lower pH values (26.1 ± 5.8 %), where the H2 consumption was completely inhibited. Thus, pH was identified as a key parameter for both butyrate synthesis and the development of hydrogenotrophic activity.
Collapse
Affiliation(s)
- Silvia García-Casado
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
5
|
de Leeuw KD, van Willigen MJW, Vrauwdeunt T, Strik DPPTB. CO 2 supply is a powerful tool to control homoacetogenesis, chain elongation and solventogenesis in ethanol and carboxylate fed reactor microbiomes. Front Bioeng Biotechnol 2024; 12:1329288. [PMID: 38720876 PMCID: PMC11076876 DOI: 10.3389/fbioe.2024.1329288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Anaerobic fermentation technology enables the production of medium chain carboxylates and alcohols through microbial chain elongation. This involves steering reactor microbiomes to yield desired products, with CO2 supply playing a crucial role in controlling ethanol-based chain elongation and facilitating various bioprocesses simultaneously. In the absence of CO2 supply (Phase I), chain elongation predominantly led to n-caproate with a high selectivity of 96 Cmol%, albeit leaving approximately 80% of ethanol unconverted. During this phase, C. kluyveri and Proteiniphilum-related species dominated the reactors. In Phase II, with low CO2 input (2.0 NmL L-1 min-1), formation of n-butyrate, butanol, and hexanol was stimulated. Increasing CO2 doses in Phase III (6 NmL L-1 min-1) led to CO2 utilization via homoacetogenesis, coinciding with the enrichment of Clostridium luticellarii, a bacterium that can use CO2 as an electron acceptor. Lowering CO2 dose to 0.5 NmL L-1 min-1 led to a shift in microbiome composition, diminishing the dominance of C. luticellarii while increasing C. kluyveri abundance. Additionally, other Clostridia, Proteiniphilum, and Lactobacillus sakei-related species became prevalent. This decrease in CO2 load from 6 to 0.5 NmL L-1 min-1 minimized excessive ethanol oxidation from 30%-50% to 0%-3%, restoring a microbiome favoring net n-butyrate consumption and n-caproate production. The decreased ethanol oxidation coincided with the resurgence of hydrogen formation at partial pressures above 1%. High concentrations of butyrate, caproate, and ethanol in the reactor, along with low acetate concentration, promoted the formation of butanol and hexanol. It is evident that CO2 supply is indispensable for controlling chain elongation in an open culture and it can be harnessed to stimulate higher alcohol formation or induce CO2 utilization as an electron acceptor.
Collapse
Affiliation(s)
- Kasper D. de Leeuw
- Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
- ChainCraft B.V., Amsterdam, Netherlands
| | | | - Ton Vrauwdeunt
- Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
6
|
Seid N, Ochsenreither K, Neumann A. Caproate production from Enset fiber in one-pot two-step fermentation using anaerobic fungi (Neocallimastix cameroonii strain G341) and Clostridium kluyveri DSM 555. Microb Cell Fact 2023; 22:216. [PMID: 37864174 PMCID: PMC10588050 DOI: 10.1186/s12934-023-02224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Lignocellulosic biomass plays a crucial role in creating a circular bioeconomy and minimizing environmental impact. Enset biomass is a byproduct of traditional Ethiopian Enset food processing that is thrown away in huge quantities. This study aimed to produce caproate from Enset fiber using Neocallimastix cameroonii strain G341 and Clostridium kluyveri DSM 555 in one-pot two-step fermentation. RESULTS The process started by growing N. cameroonii on Enset fiber as a carbon source for 7 days. Subsequently, the fungal culture was inoculated with active C. kluyveri preculture and further incubated. The results showed that N. cameroonii grew on 0.25 g untreated Enset fiber as the sole carbon source and produced 1.16 mmol acetate, 0.51 mmol hydrogen, and 1.34 mmol formate. In addition, lactate, succinate, and ethanol were detected in small amounts, 0.17 mmol, 0.08 mmol, and 0.7 mmol, respectively. After inoculating with C. kluyveri, 0.3 mmol of caproate and 0.48 mmol of butyrate were produced, and hydrogen production also increased to 0.95 mmol compared to sole N. cameroonii fermentation. Moreover, after the culture was supplemented with 2.18 mmol of ethanol during C. kluyveri inoculation, caproate, and hydrogen production was further increased to 1.2 and 1.36 mmol, respectively, and the consumption of acetate also increased. CONCLUSION A novel microbial cell factory was developed to convert untreated lignocellulosic Enset fiber into the medium chain carboxylic acid caproate and H2 by a co-culture of the anaerobic fungi N. cameroonii and C. kluyveri. This opens a new value chain for Enset farmers, as the process requires only locally available raw materials and low-price fermenters. As the caproate production was mainly limited by the available ethanol, the addition of locally produced ethanol-containing fermentation broth ("beer") would further increase the titer.
Collapse
Affiliation(s)
- Nebyat Seid
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, P.O.B: 1176, Addis Ababa, Ethiopia.
| | - Katrin Ochsenreither
- Department of Chemical and Process Engineering, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Anke Neumann
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
| |
Collapse
|
7
|
Henry GBL, Awedem Wobiwo F, Isenborghs A, Nicolay T, Godin B, Stenuit BA, Gerin PA. A specific H 2/CO 2 consumption molar ratio of 3 as a signature for the chain elongation of carboxylates from brewer's spent grain acidogenesis. Front Bioeng Biotechnol 2023; 11:1165197. [PMID: 37324420 PMCID: PMC10267453 DOI: 10.3389/fbioe.2023.1165197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Brewer's spent grain (BSG) is an undervalorized organic feedstock residue composed of fermentable macromolecules, such as proteins, starch, and residual soluble carbohydrates. It also contains at least 50% (as dry weight) of lignocellulose. Methane-arrested anaerobic digestion is one of the promising microbial technologies to valorize such complex organic feedstock into value-added metabolic intermediates, such as ethanol, H2, and short-chain carboxylates (SCC). Under specific fermentation conditions, these intermediates can be microbially transformed into medium-chain carboxylates through a chain elongation pathway. Medium-chain carboxylates are of great interest as they can be used as bio-based pesticides, food additives, or components of drug formulations. They can also be easily upgraded by classical organic chemistry into bio-based fuels and chemicals. This study investigates the production potential of medium-chain carboxylates driven by a mixed microbial culture in the presence of BSG as an organic substrate. Because the conversion of complex organic feedstock to medium-chain carboxylates is limited by the electron donor content, we assessed the supplementation of H2 in the headspace to improve the chain elongation yield and increase the production of medium-chain carboxylates. The supply of CO2 as a carbon source was tested as well. The additions of H2 alone, CO2 alone, and both H2 and CO2 were compared. The exogenous supply of H2 alone allowed CO2 produced during acidogenesis to be consumed and nearly doubled the medium-chain carboxylate production yield. The exogenous supply of CO2 alone inhibited the whole fermentation. The supplementation of both H2 and CO2 allowed a second elongation phase when the organic feedstock was exhausted, which increased the medium-chain carboxylate production by 285% compared to the N2 reference condition. Carbon- and electron-equivalent balances, and the stoichiometric ratio of 3 observed for the consumed H2/CO2, suggest an H2- and CO2-driven second elongation phase, converting SCC to medium-chain carboxylates without an organic electron donor. The thermodynamic assessment confirmed the feasibility of such elongation.
Collapse
Affiliation(s)
- Grégoire B. L. Henry
- Laboratory of Bioengineering and Biorefining, Earth and Life Institute—Applied Microbiology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Florent Awedem Wobiwo
- Laboratory of Bioengineering and Biorefining, Earth and Life Institute—Applied Microbiology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Arnaud Isenborghs
- Laboratory of Bioengineering and Biorefining, Earth and Life Institute—Applied Microbiology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Thomas Nicolay
- Laboratory of Bioengineering and Biorefining, Earth and Life Institute—Applied Microbiology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Bruno Godin
- Walloon Agricultural Research Center (CRA-W), Valorization of Agricultural Products Department, Gembloux, Belgium
| | - Benoit A. Stenuit
- Laboratory of Bioengineering and Biorefining, Earth and Life Institute—Applied Microbiology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Patrick A. Gerin
- Laboratory of Bioengineering and Biorefining, Earth and Life Institute—Applied Microbiology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
8
|
Parera Olm I, Sousa DZ. Upgrading dilute ethanol to odd-chain carboxylic acids by a synthetic co-culture of Anaerotignum neopropionicum and Clostridium kluyveri. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:83. [PMID: 37194097 DOI: 10.1186/s13068-023-02336-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Dilute ethanol streams generated during fermentation of biomass or syngas can be used as feedstocks for the production of higher value products. In this study, we describe a novel synthetic microbial co-culture that can effectively upgrade dilute ethanol streams to odd-chain carboxylic acids (OCCAs), specifically valerate and heptanoate. The co-culture consists of two strict anaerobic microorganisms: Anaerotignum neopropionicum, a propionigenic bacterium that ferments ethanol, and Clostridium kluyveri, well-known for its chain-elongating metabolism. In this co-culture, A. neopropionicum grows on ethanol and CO2 producing propionate and acetate, which are then utilised by C. kluyveri for chain elongation with ethanol as the electron donor. RESULTS A co-culture of A. neopropionicum and C. kluyveri was established in serum bottles with 50 mM ethanol, leading to the production of valerate (5.4 ± 0.1 mM) as main product of ethanol-driven chain elongation. In a continuous bioreactor supplied with 3.1 g ethanol L-1 d-1, the co-culture exhibited high ethanol conversion (96.6%) and produced 25% (mol/mol) valerate, with a steady-state concentration of 8.5 mM and a rate of 5.7 mmol L-1 d-1. In addition, up to 6.5 mM heptanoate was produced at a rate of 2.9 mmol L-1 d-1. Batch experiments were also conducted to study the individual growth of the two strains on ethanol. A. neopropionicum showed the highest growth rate when cultured with 50 mM ethanol (μmax = 0.103 ± 0.003 h-1) and tolerated ethanol concentrations of up to 300 mM. Cultivation experiments with C. kluyveri showed that propionate and acetate were used simultaneously for chain elongation. However, growth on propionate alone (50 mM and 100 mM) led to a 1.8-fold reduction in growth rate compared to growth on acetate. Our results also revealed sub-optimal substrate use by C. kluyveri during odd-chain elongation, where excessive ethanol was oxidised to acetate. CONCLUSIONS This study highlights the potential of synthetic co-cultivation in chain elongation processes to target the production of OCCAs. Furthermore, our findings shed light on to the metabolism of odd-chain elongation by C. kluyveri.
Collapse
Affiliation(s)
- Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| |
Collapse
|
9
|
Harahap BM, Ahring BK. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023; 11:microorganisms11040995. [PMID: 37110418 PMCID: PMC10143712 DOI: 10.3390/microorganisms11040995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation.
Collapse
Affiliation(s)
- Budi Mandra Harahap
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall, Pullman, WA 99164, USA
| |
Collapse
|
10
|
Baleeiro FCF, Varchmin L, Kleinsteuber S, Sträuber H, Neumann A. Formate-induced CO tolerance and methanogenesis inhibition in fermentation of syngas and plant biomass for carboxylate production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:26. [PMID: 36805806 PMCID: PMC9936662 DOI: 10.1186/s13068-023-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/29/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Production of monocarboxylates using microbial communities is highly dependent on local and degradable biomass feedstocks. Syngas or different mixtures of H2, CO, and CO2 can be sourced from biomass gasification, excess renewable electricity, industrial off-gases, and carbon capture plants and co-fed to a fermenter to alleviate dependence on local biomass. To understand the effects of adding these gases during anaerobic fermentation of plant biomass, a series of batch experiments was carried out with different syngas compositions and corn silage (pH 6.0, 32 °C). RESULTS Co-fermentation of syngas with corn silage increased the overall carboxylate yield per gram of volatile solids (VS) by up to 29% (0.47 ± 0.07 g gVS-1; in comparison to 0.37 ± 0.02 g gVS-1 with a N2/CO2 headspace), despite slowing down biomass degradation. Ethylene and CO exerted a synergistic effect in preventing methanogenesis, leading to net carbon fixation. Less than 12% of the electrons were misrouted to CH4 when either 15 kPa CO or 5 kPa CO + 1.5 kPa ethylene was used. CO increased the selectivity to acetate and propionate, which accounted for 85% (electron equivalents) of all products at 49 kPa CO, by favoring lactic acid bacteria and actinobacteria over n-butyrate and n-caproate producers. Inhibition of n-butyrate and n-caproate production by CO happened even when an inoculum preacclimatized to syngas and lactate was used. Intriguingly, the effect of CO on n-butyrate and n-caproate production was reversed when formate was present in the broth. CONCLUSIONS The concept of co-fermenting syngas and plant biomass shows promise in three aspects: by making anaerobic fermentation a carbon-fixing process, by increasing the yields of short-chain carboxylates (propionate and acetate), and by minimizing electron losses to CH4. Moreover, a model was proposed for how formate can alleviate CO inhibition in certain acidogenic bacteria. Testing the fermentation of syngas and plant biomass in a continuous process could potentially improve selectivity to n-butyrate and n-caproate by enriching chain-elongating bacteria adapted to CO and complex biomass.
Collapse
Affiliation(s)
- Flávio C F Baleeiro
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Lukas Varchmin
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Anke Neumann
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany.
| |
Collapse
|
11
|
Yu D, Cheng S, Cao F, Varrone C, He Z, Liu W, Yue X, Zhou A. Unveiling the bioelectrocatalyzing behaviors and microbial ecological mechanisms behind caproate production without exogenous electron donor. ENVIRONMENTAL RESEARCH 2022; 215:114077. [PMID: 35981610 DOI: 10.1016/j.envres.2022.114077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems were proposed as a promising approach for the efficient valorization of biomass into 6-8 carbon atom medium-chain fatty acids (MCFAs), the precursors for high value-added chemicals or renewable energy, via acetyl-CoA-mediated chain elongation (CE). To achieve CE processes, exogenous electron donors (EDs), e.g., ethanol or lactic acid, were normally prerequisites. This research built a microbial electrolysis cell (MEC) for MCFAs biosynthesis from acetate without exogenous EDs addition. A wide range of applied voltages (0.6-1.2 V) was first employed to investigate the bioelectrocatalyzing response. The results show that caproate and butyrate were the main products formed from acetate under different applied voltages. Maximum caproate concentration (501 ± 12 mg COD/L) was reached at 0.8 V on day 3. Under this applied voltage, hydrogen partial pressure stabilized at about 0.1 bar, beneficial for MCFA production. Electron and carbon balances revealed that the electron-accepting capacity achieved 32% at 0.8 V, showing the highest interspecies electron transfer efficiency. Most of the carbon was recovered in the form of caproate (carbon loss was 9%). MiSeq sequencing revealed Rhodobacter and Clostridium_sensu_stricto playing the crucial role in the biosynthesis of caproate, while Acetobacterium, Acetoanaerobium, and Acetobacter represented the main ED contributors. Four available flora, i.e., homo-acetogen, anaerobic fermentation bacteria, electrode active bacteria, and nitrate-reducing bacteria, interacted and promoted caproate synthesis by molecular ecological network analysis.
Collapse
Affiliation(s)
- Delin Yu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Shuanglan Cheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Fang Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, Copenhagen, Denmark
| | - Zhangwei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 51805, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
12
|
Wu L, Wei W, Liu X, Wang D, Ni BJ. Potentiality of recovering bioresource from food waste through multi-stage Co-digestion with enzymatic pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115777. [PMID: 35982572 DOI: 10.1016/j.jenvman.2022.115777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Food waste (FW) is not only a major social, nutritional and environmental issue, but also an underutilized resource with significant energy, which has not been fully explored currently. Considering co-digestion can adjust carbon to nitrogen ratio (C/N) of the feedstock and improve the synergetic interactions among microorganisms, anaerobic co-digestion (AnCoD) is then becoming an emerging approach to achieve higher energy recovery from FW while ensuring the stability of the system. To obtain higher economic gain from such biodegradable wastes, increasing attention has been paid on optimizing the system configuration or applying enzymatic hydrolysis before digesting FW. A better understanding on the potentiality of correlating enzymatic pretreatment and AnCoD operated in various system configuration would enhance the bioresource recovery from FW and increase revenue through treating this organic waste. Specifically, the biobased chemicals outputs from FW-related co-digestion system with different configuration were firstly compared in this review. A deep discussion concerning the challenges for achieving bioresources recovery from FW co-digestion systems with enzymatic pretreatment was then given. Recommendations for future studies regarding FW co-digestion were then proposed at last.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xuran Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dongbo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
13
|
Strik DPBTB, Ganigué R, Angenent LT. Editorial: Microbial Chain Elongation- Close the Carbon Loop by Connecting-Communities. Front Bioeng Biotechnol 2022; 10:894490. [PMID: 35880097 PMCID: PMC9307487 DOI: 10.3389/fbioe.2022.894490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- David P. B. T. B. Strik
- Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: David P. B. T. B. Strik,
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Gent, Belgium
| | - Largus T. Angenent
- Environmental Biotechnology Group, Center of Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Rovira-Alsina L, Romans-Casas M, Balaguer MD, Puig S. Thermodynamic approach to foresee experimental CO 2 reduction to organic compounds. BIORESOURCE TECHNOLOGY 2022; 354:127181. [PMID: 35447329 DOI: 10.1016/j.biortech.2022.127181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic gas fermentation is a promising approach to transform carbon dioxide (CO2) into chemical building blocks. However, the main operational conditions to enhance the process and its selectivity are still unknown. The main objective of this study was to trigger chain elongation from a joint perspective of thermodynamic and experimental assessment. Thermodynamics revealed that acetic acid formation was the most spontaneous reaction, followed by n-caproic and n-butyric acids, while the doorway for alcohols production was bounded by the selected conditions. Best parameters combinations were applied in three 0.12 L fermenters. Experimentally, n-caproic acid formation was boosted at pH 7, 37 °C, Acetate:Ethanol mass ratio of 1:3 and low H2 partial pressure. Though these conditions did not match with those required to produce their main substrates, the unification of both perspectives yielded the highest n-caproic acid concentration (>11 g L-1) so far from simple substrates, accounting for 77 % of the total products.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Meritxell Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
15
|
He Y, Lens PNL, Veiga MC, Kennes C. Effect of Endogenous and Exogenous Butyric Acid on Butanol Production From CO by Enriched Clostridia. Front Bioeng Biotechnol 2022; 10:828316. [PMID: 35252136 PMCID: PMC8888879 DOI: 10.3389/fbioe.2022.828316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
Butanol is a potential renewable fuel. To increase the selectivity for butanol during CO fermentation, exogenous acetic acid and ethanol, exogenous butyric acid or endogenous butyric acid from glucose fermentation have been investigated using CO as reducing power, with a highly enriched Clostridium sludge. Addition of 3.2 g/L exogenous butyric acid led to the highest 1.9 g/L butanol concentration with a conversion efficiency of 67%. With exogenous acetate and ethanol supply, the butanol concentration reached 1.6 g/L at the end of the incubation. However, the presence of acetic acid and ethanol favoured butanol production to 2.6 g/L from exogenous butyric acid by the enriched sludge. Finally, exogenous 14 g/L butyric acid yielded the highest butanol production of 3.4 g/L, which was also among the highest butanol concentration from CO/syngas fermentation reported so far. CO addition triggered butanol production from endogenous butyric acid (produced from glucose, Glucose + N2) with as high as 58.6% conversion efficiency and 62.1% butanol yield. However, no efficient butanol production was found from glucose and CO co-fermentation (Glucose + CO), although a similar amount of endogenous butyric acid was produced compared to Glucose + N2. The Clostridium genus occupied a relative abundance as high as 82% from the initial inoculum, while the Clostridia and Bacilli classes were both enriched and dominated in Glucose + N2 and Glucose + CO incubations. This study shows that the supply of butyric acid is a possible strategy for enhancing butanol production by CO fed anaerobic sludge, either via exogenous butyric acid, or via endogenous production by sugar fermentation.
Collapse
Affiliation(s)
- Yaxue He
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña (UDC), A Coruña, Spain
- National University of Ireland Galway, Galway, Ireland
| | | | - María C. Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña (UDC), A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), BIOENGIN Group, University of La Coruña (UDC), A Coruña, Spain
- *Correspondence: Christian Kennes,
| |
Collapse
|
16
|
Zhang C, Liu Y, Zhang W, Sun L, Baeyens J. Modification of wheat straw to improve the caproate production in a cell immobilized system. BIORESOURCE TECHNOLOGY 2021; 342:125984. [PMID: 34563819 DOI: 10.1016/j.biortech.2021.125984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Wheat straw is a favorable cell carrier in the caproate fermentation system, yet its smooth surface limits the biofilm formation. In this study, the modification of wheat straw was conducted using three different chemical methods and the influence of its modified surface on the caproate fermentation was investigated. Results showed that the sodium hydroxide was the optimum reagent for modification of wheat straw, where both the external and internal surfaces were effectively modified, resulting in 34.4% increased specific surface area. The highest caproate production of 21.1 g/L was obtained in fed-batch fermentation, which was ascribed to the formation of a thick biofilm on the modified carrier. Moreover, the crystallinity index of the carrier increased during the fed-batch fermentation, implying that the modified wheat straw was a stable matrix for cell immobilization. This study provides an effective way for efficient caproate production through modification of wheat straw.
Collapse
Affiliation(s)
- Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China; Jiangsu Key Laboratory for Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China.
| | - Yan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Wenhui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jan Baeyens
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
17
|
Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:373-407. [PMID: 34811579 DOI: 10.1007/10_2021_180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syngas, a gaseous mixture of CO, H2 and CO2, can be produced by gasification of carbon-containing materials, including organic waste materials or lignocellulosic biomass. The conversion of bio-based syngas to chemicals is foreseen as an important process in circular bioeconomy. Carbon monoxide is also produced as a waste gas in many industrial sectors (e.g., chemical, energy, steel). Often, the purity level of bio-based syngas and waste gases is low and/or the ratios of syngas components are not adequate for chemical conversion (e.g., by Fischer-Tropsch). Microbes are robust catalysts to transform impure syngas into a broad spectrum of products. Fermentation of CO-rich waste gases to ethanol has reached commercial scale (by axenic cultures of Clostridium species), but production of other chemical building blocks is underexplored. Currently, genetic engineering of carboxydotrophic acetogens is applied to increase the portfolio of products from syngas/CO, but the limited energy metabolism of these microbes limits product yields and applications (for example, only products requiring low levels of ATP for synthesis can be produced). An alternative approach is to explore microbial consortia, including open mixed cultures and synthetic co-cultures, to create a metabolic network based on CO conversion that can yield products such as medium-chain carboxylic acids, higher alcohols and other added-value chemicals.
Collapse
|
18
|
Baleeiro FCF, Ardila MS, Kleinsteuber S, Sträuber H. Effect of Oxygen Contamination on Propionate and Caproate Formation in Anaerobic Fermentation. Front Bioeng Biotechnol 2021; 9:725443. [PMID: 34568301 PMCID: PMC8460912 DOI: 10.3389/fbioe.2021.725443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023] Open
Abstract
Mixed microbial cultures have become a preferred choice of biocatalyst for chain elongation systems due to their ability to convert complex substrates into medium-chain carboxylates. However, the complexity of the effects of process parameters on the microbial metabolic networks is a drawback that makes the task of optimizing product selectivity challenging. Here, we studied the effects of small air contaminations on the microbial community dynamics and the product formation in anaerobic bioreactors fed with lactate, acetate and H2/CO2. Two stirred tank reactors and two bubble column reactors were operated with H2/CO2 gas recirculation for 139 and 116 days, respectively, at pH 6.0 and 32°C with a hydraulic retention time of 14 days. One reactor of each type had periods with air contamination (between 97 ± 28 and 474 ± 33 mL O2 L−1 d−1, lasting from 4 to 32 days), while the control reactors were kept anoxic. During air contamination, production of n-caproate and CH4 was strongly inhibited, whereas no clear effect on n-butyrate production was observed. In a period with detectable O2 concentrations that went up to 18%, facultative anaerobes of the genus Rummeliibacillus became predominant and only n-butyrate was produced. However, at low air contamination rates and with O2 below the detection level, Coriobacteriia and Actinobacteria gained a competitive advantage over Clostridia and Methanobacteria, and propionate production rates increased to 0.8–1.8 mmol L−1 d−1 depending on the reactor (control reactors 0.1–0.8 mmol L−1 d−1). Moreover, i-butyrate production was observed, but only when Methanobacteria abundances were low and, consequently, H2 availability was high. After air contamination stopped completely, production of n-caproate and CH4 recovered, with n-caproate production rates of 1.4–1.8 mmol L−1 d−1 (control 0.7–2.1 mmol L−1 d−1). The results underline the importance of keeping strictly anaerobic conditions in fermenters when consistent n-caproate production is the goal. Beyond that, micro-aeration should be further tested as a controllable process parameter to shape the reactor microbiome. When odd-chain carboxylates are desired, further studies can develop strategies for their targeted production by applying micro-aerobic conditions.
Collapse
Affiliation(s)
- Flávio C F Baleeiro
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Process Engineering in Life Science 2, Technical Biology, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Magda S Ardila
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Process Engineering in Life Science 2, Technical Biology, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
19
|
Baleeiro FCF, Kleinsteuber S, Sträuber H. Hydrogen as a Co-electron Donor for Chain Elongation With Complex Communities. Front Bioeng Biotechnol 2021; 9:650631. [PMID: 33898406 PMCID: PMC8059637 DOI: 10.3389/fbioe.2021.650631] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Electron donor scarcity is seen as one of the major issues limiting economic production of medium-chain carboxylates from waste streams. Previous studies suggest that co-fermentation of hydrogen in microbial communities that realize chain elongation relieves this limitation. To better understand how hydrogen co-feeding can support chain elongation, we enriched three different microbial communities from anaerobic reactors (A, B, and C with ascending levels of diversity) for their ability to produce medium-chain carboxylates from conventional electron donors (lactate or ethanol) or from hydrogen. In the presence of abundant acetate and CO2, the effects of different abiotic parameters (pH values in acidic to neutral range, initial acetate concentration, and presence of chemical methanogenesis inhibitors) were tested along with the enrichment. The presence of hydrogen facilitated production of butyrate by all communities and improved production of i-butyrate and caproate by the two most diverse communities (B and C), accompanied by consumption of acetate, hydrogen, and lactate/ethanol (when available). Under optimal conditions, hydrogen increased the selectivity of conventional electron donors to caproate from 0.23 ± 0.01 mol e-/mol e- to 0.67 ± 0.15 mol e-/mol e- with a peak caproate concentration of 4.0 g L-1. As a trade-off, the best-performing communities also showed hydrogenotrophic methanogenesis activity by Methanobacterium even at high concentrations of undissociated acetic acid of 2.9 g L-1 and at low pH of 4.8. According to 16S rRNA amplicon sequencing, the suspected caproate producers were assigned to the family Anaerovoracaceae (Peptostreptococcales) and the genera Megasphaera (99.8% similarity to M. elsdenii), Caproiciproducens, and Clostridium sensu stricto 12 (97-100% similarity to C. luticellarii). Non-methanogenic hydrogen consumption correlated to the abundance of Clostridium sensu stricto 12 taxa (p < 0.01). If a robust methanogenesis inhibition strategy can be found, hydrogen co-feeding along with conventional electron donors can greatly improve selectivity to caproate in complex communities. The lessons learned can help design continuous hydrogen-aided chain elongation bioprocesses.
Collapse
Affiliation(s)
- Flávio C F Baleeiro
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Technical Biology, Institute of Process Engineering in Life Science II, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
20
|
Geinitz B, Hüser A, Mann M, Büchs J. Gas Fermentation Expands the Scope of a Process Network for Material Conversion. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bertram Geinitz
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Aline Hüser
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Marcel Mann
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
21
|
Wang Y, Wei W, Wu SL, Ni BJ. Zerovalent Iron Effectively Enhances Medium-Chain Fatty Acids Production from Waste Activated Sludge through Improving Sludge Biodegradability and Electron Transfer Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10904-10915. [PMID: 32867479 DOI: 10.1021/acs.est.0c03029] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel zerovalent iron (ZVI) technique to simultaneously improve the production of medium-chain fatty acids (MCFAs) from waste activated sludge (WAS) and enhance WAS degradation during anaerobic WAS fermentation was proposed in this study. Experimental results showed that the production and selectivity of MCFAs were effectively promoted when ZVI was added at 1-20 g/L. The maximum MCFAs production of 15.4 g COD (Chemical Oxygen Demand)/L and MCFAs selectivity of 71.7% were both achieved at 20 g/L ZVI, being 5.3 and 4.8 times that without ZVI (2.9 g COD/L and 14.9%). Additionally, ZVI also promoted WAS degradation, which increased from 0.61 to 0.96 g COD/g VS when ZVI increased from 0 to 20 g/L. The microbial community analysis revealed that the ZVI increased the populations of key anaerobes related to hydrolysis, acidification, and chain elongation. Correspondingly, the solubilization, hydrolysis, and acidification processes of WAS were revealed to be improved by ZVI, thereby providing more substrates (short-chain fatty acids (SCFAs)) for producing MCFAs. The mechanism studies showed that ZVI declined the oxidation-reduction potential (ORP), creating a more favorable environment for the anaerobic biological processes. More importantly, ZVI with strong conductivity could act as an electron shuttle, contributing to increasing electron transfer efficiency from electron donor to acceptor. This strategy provides a new paradigm of transforming waste sludge into assets by a low-cost waste to bring significant economic benefits to sludge disposal and wastewater treatment.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Lin Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|