1
|
Arya M, Shahi N, Bisht I, Pandey N, Mallik SK. Probiotic potential of Bacillus velezensis STPB10 sourced from the gut microbiota of a hillstream fish Schizothorax richardsonii (Gray, 1832) for aquaculture applications. Sci Rep 2025; 15:17580. [PMID: 40399461 PMCID: PMC12095472 DOI: 10.1038/s41598-025-02836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025] Open
Abstract
The study focused on the evaluation of the probiotic potency of Bacillus velenzensis STPB10, isolated from the digestive tract of the hillstream fish Snow trout (Schizothorax richardsonii). Ten B. velezensis strains were identified through colony morphology, biochemical analysis, and 16 S rRNA methods. The representative laboratory strain STPB10, was subjected to various in vitro assessments including tolerance to pH, bile salt resistance, NaCl, temperature, biofilm, endospore formation, antibiotic susceptibility and antagonistic activity to determine its potential as a probiotic strain. B. velezensis STPB10 exhibited positive results for catalase, glucose, arginine, lysine, and endospore tests, while it yielded negative results for oxidative/fermentative, DNase, and urease tests. This test isolate was γ-hemolytic in nature and demonstrated growth across a temperature range of 15 to 35 °C. Moreover, it exhibited survival rates of 31, 39.7, 47, 63, and 75% at pH values of 2, 2.5, 3, 3.5, and 4, respectively, after 6 h of incubation. At a bile salt concentration of 0.3%, the bacterium exhibited a survivability of more than 99%. A strong biofilm production by B. velezensis STPB10 was detected in tryptone soya broth enriched with 0.45% glucose (p < 0.05). It also exhibited significantly greater adhesion to intestinal mucus (63.67%). Following exposure of the intestinal mucus to B. velezensis STPB10, the adhesion of A. hydrophila, A. veronii, (A) salmonicida and V. anguillarum to the mucus was notably reduced. It was susceptible to several antibiotics and produced an antagonistic effect against pathogenic bacteria Aeromonas salmonicida, Aeromonas veronii, Vibrio anguillarum, and Aeromonas hydrophila isolated from diseased fish. The pathogenicity of (B) velezensis STPB10 through intraperitoneal injection and immersion challenge at cell concentrations of 108 and 109 CFU mL-1 revealed that the strain did not produce any pathogenic risk to common carp. These findings highlight the resilience and adaptability of B. velezensis STPB10 as a candidate probiotic in aquaculture.
Collapse
Affiliation(s)
- Manju Arya
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Bhimtal, Nainital, 263 136, Uttarakhand, India
- Zoology Department, Soban Singh Jeena Campus (Kumaun University), Almora, 263601, Uttarakhand, India
| | - Neetu Shahi
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Bhimtal, Nainital, 263 136, Uttarakhand, India.
| | - Ila Bisht
- Zoology Department, Soban Singh Jeena Campus (Kumaun University), Almora, 263601, Uttarakhand, India
| | - Nityanand Pandey
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Sumanta Kumar Mallik
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Bhimtal, Nainital, 263 136, Uttarakhand, India.
| |
Collapse
|
2
|
Shi X, Zhou W, Lu X, Cao C, Sheng D, Ren X, Jin N, Zhang Y, Guo Z, Cao S, Ye S. Screening of Antagonistic Bacteria against Three Aquatic Pathogens and Characterization of Lipopeptides in Bacillus cereus BA09. J Microbiol Biotechnol 2024; 34:2023-2032. [PMID: 39462613 PMCID: PMC11540599 DOI: 10.4014/jmb.2404.04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/29/2024]
Abstract
Screening for antagonistic bacteria on aquatic pathogens and identification of antagonistic ingredients are essential to reduce the use of chemicals in aquaculture. In this study, strain BA09, subsequently identified as Bacillus cereus, simultaneously displayed strong antagonistic effects on Edwardsiella tarda, Vibrio harveyi, and Streptococcus anisopliae in the initial screening and rescreening. In addition, the methanol extract of BA09 was subjected to antibacterial activity verification and one-dimensional (1D) reversed-phase liquid chromatography (RPLC) preparation. A total of 27 fractions were collected, 6 of which were subjected to two-dimensional (2D) RPLC separation and tracked as antibacterial. A total of 14 lipopeptides that included 9 fengycin homologs, 3 bacillomycin homologs, and 2 surfactin homologs were identified by tandem high-resolution mass spectrometry. Through characterization of the antibacterial substance in Bacillus cereus BA09, which simultaneously inhibited E. tarda, V. harveyi, and S. agalactiae, the current study provides a theoretical basis for the development of antibacterial drugs in aquaculture.
Collapse
Affiliation(s)
- Xinran Shi
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Weijia Zhou
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Xiaocen Lu
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Cuiyan Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, P.R. China
| | - Dong Sheng
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Xu Ren
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Nanlin Jin
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Yu Zhang
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Zhixin Guo
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Shengnan Cao
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Shigen Ye
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| |
Collapse
|
3
|
Yang H, Du D, Zhang Q, Teame T, Wang A, Hao Q, Liu S, Ding Q, Yao Y, Yang Y, Ran C, Li S, Zhang Z, Zhou Z. Dietary Bacillus velezensis T23 fermented products supplementation improves growth, hepatopancreas and intestine health of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109595. [PMID: 38692381 DOI: 10.1016/j.fsi.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
This study aimed to elucidate the effects of dietary fermented products of Bacillus velezensis T23 on the growth, immune response and gut microbiota in Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed with diets containing fermentation products of B. velezensis T23 at levels of (0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g/kg) for 4 weeks, to assess the influence on shrimp growth. The results showed that 0.3 and 0.4 g/kg T23 supplementation improved shrimp growth and feed utilization. Based on these results we selected these three diets (Control, 0.3T23 and 0.4T23) to assess the effect on immune response and gut microbiota of shrimp. Compared with the control, the 0.3T23 and 0.4T23 groups enhanced lipase and α-amylase activities in the gut significantly. Moreover, the 0.4T23 group decreased TAG and MDA levels in hepatopancreas, ALT and AST levels of serum significantly (P < 0.05). In hepatopancreas, CAT and SOD activities were improved observably and the MDA content was reduced markedly in both T23 groups. The expressions of antimicrobial related genes, Cru and peroxinectin in the 0.3T23 group, and proPO and peroxinectin in the 0.4T23 group were up-regulated remarkably (P < 0.05). Moreover, hepatopancreas of shrimp fed with a diet amended with T23 showed a significant down-regulated expression of nf-kb and tnf-α genes, while expressions of tgf-β was considerably up-regulated. Furthermore, serum LPS and LBP contents were reduced markedly in T23 groups. Intestinal SOD and CAT were noteworthy higher in T23 groups (P < 0.05). In the intestine of shrimp fed on the diet enriched with T23 the expression of nf-κb and tnf-α exhibited markedly down-regulated, whereas hif1α was up-regulated (P < 0.05). Besides, in the intestine of shrimp grouped under T23, Cru and peroxinectin genes were markedly up-regulated (P < 0.05). Dietary 0.3 g/kg T23 also upregulated the ratio of Rhodobacteraceae to Vibrionaceae in the gut of the shrimp. Taken together, the inclusion of B. velezensis T23 in the diet of shrimp enhanced the growth and feed utilization, enhanced hepatopancreas and intestine health.
Collapse
Affiliation(s)
- Hongwei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Dongdong Du
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Tigray Agricultural Research Institute (TARI), Mekelle, Tigray, Ethiopia
| | - Anran Wang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Norway-China Joint Lab on Fish Gut Microbiota, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Shubin Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianwen Ding
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengkang Li
- Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada.
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Kunpeng Institute of Modern Agriculture of Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528225, China.
| |
Collapse
|
4
|
Tang T, Wang F, Huang H, Guo J, Guo X, Duan Y, Wang X, Wang Q, You J. Bacillus velezensis LT1: a potential biocontrol agent for southern blight on Coptis chinensis. Front Microbiol 2024; 15:1337655. [PMID: 38500587 PMCID: PMC10946422 DOI: 10.3389/fmicb.2024.1337655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Southern blight, caused by Sclerotium rolfsii, poses a serious threat to the cultivation of Coptis chinensis, a plant with significant medicinal value. The overreliance on fungicides for controlling this pathogen has led to environmental concerns and resistance issues. There is an urgent need for alternative, sustainable disease management strategies. Methods In this study, Bacillus velezensis LT1 was isolated from the rhizosphere soil of diseased C. chinensis plants. Its biocontrol efficacy against S. rolfsii LC1 was evaluated through a confrontation assay. The antimicrobial lipopeptides in the fermentation liquid of B. velezensis LT1 were identified using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS). The effects of B. velezensis LT1 on the mycelial morphology of S. rolfsii LC1 were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results The confrontation assay indicated that B. velezensis LT1 significantly inhibited the growth of S. rolfsii LC1, with an inhibition efficiency of 78.41%. MALDI-TOF-MS analysis detected the presence of bacillomycin, surfactin, iturin, and fengycin in the fermentation liquid, all known for their antifungal properties. SEM and TEM observations revealed that the mycelial and cellular structures of S. rolfsii LC1 were markedly distorted when exposed to B. velezensis LT1. Discussion The findings demonstrate that B. velezensis LT1 has considerable potential as a biocontrol agent against S. rolfsii LC1. The identified lipopeptides likely contribute to the antifungal activity, and the morphological damage to S. rolfsii LC1 suggests a mechanism of action. This study underscores the importance of exploring microbial biocontrol agents as a sustainable alternative to chemical fungicides in the management of plant diseases. Further research into the genetic and functional aspects of B. velezensis LT1 could provide deeper insights into its biocontrol mechanisms and facilitate its application in agriculture.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Fanfan Wang
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Houyun Huang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
| | - Jie Guo
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoliang Guo
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Yuanyuan Duan
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoyue Wang
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Qingfang Wang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jingmao You
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|
5
|
Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y. Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol 2023; 14:1322910. [PMID: 38125573 PMCID: PMC10731255 DOI: 10.3389/fmicb.2023.1322910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xuemei Gong
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
6
|
Huang W, Qu L, Gao P, Du G. Bioassay and Whole-Genome Analysis of Bacillus velezensis FIO1408, a Biocontrol Agent Against Pathogenic Bacteria in Aquaculture. Curr Microbiol 2023; 80:354. [PMID: 37740122 DOI: 10.1007/s00284-023-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/04/2023] [Indexed: 09/24/2023]
Abstract
Bacterial disease is one of the most critical problems in aquaculture. Probiotics represent a promising biological approach to control bacterial disease because it is effective against pathogens and environmentally friendly. This study assessed the antagonistic activities of a bacterial strain FIO1408 isolated from deep-sea water against many pathogenic bacteria in aquaculture, including Listonella anguillarum, Vibrio parahaemolyticus, Vibrio alginolyticus, Aeromonas hydrophila, Edwardsiella anguillarum, Edwardsiella tarda, and Edwardsiella piscicida. The complete genome of strain FIO1408 consisted of a circular chromosome of 4,137,639 bp and two plasmids of 16,439 bp and 24,472 bp. Phylogenetic analysis showed strain FIO1408 clustered with Bacillus velezensis strains. 12 genes/gene clusters responsible for the synthesis of secondary metabolites were identified in the FIO1408 genome, including three lipopeptides, three polyketides, three bacteriocins, one siderophore, one dipeptide, and one unknown type. Also identified were 273 unique orthologous genes primarily involved in phage resistance, protein hydrolysis, environmental survivability, and genetic stability compared to B. velezensis KACC 13105, B. velezensis FZB42T, and B. velezensis NRRL B-41580. The principal safety of FIO1408 was demonstrated by genetic analyses and feeding trials. These findings will contribute to studies on the biocontrol mechanisms of B. velezensis FIO1408 and facilitate its application as a potent biological control agent against bacterial pathogens in aquaculture.
Collapse
Affiliation(s)
- Wenhao Huang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Lingyun Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| | - Ping Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| | - Guangxun Du
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China
| |
Collapse
|
7
|
Melo-Bolívar JF, Ruiz Pardo RY, Quintanilla-Carvajal MX, Díaz LE, Alzate JF, Junca H, Rodríguez Orjuela JA, Villamil Diaz LM. Evaluation of dietary single probiotic isolates and probiotic multistrain consortia in growth performance, gut histology, gut microbiota, immune regulation, and infection resistance of Nile tilapia, Oreochromis niloticus, shows superior monostrain performance. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108928. [PMID: 37423403 DOI: 10.1016/j.fsi.2023.108928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The probiotic potential of a designed bacterial consortia isolated from a competitive exclusion culture originally obtained from the intestinal contents of tilapia juveniles were evaluated on Nile tilapia alevins. The growth performance, intestinal histology, microbiota effects, resistance to Streptococcus agalactiae challenge, and immune response were assessed. In addition, the following treatments were included in a commercial feed: A12+M4+M10 (Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp. M10), M4+M10 (P. megaterium M4, and Priestia sp. M10) and the single bacteria as controls; A12 (L. lactis A12), M4 (P. megaterium M4), M10 (Priestia sp. M10), also a commercial feed without any probiotic addition was included as a control. The results showed that all probiotic treatments improved the growth performance, intestinal histology, and resistance during experimental infection with S. agalactiae in comparison to the control fish. Also, the administration of probiotics resulted in the modulation of genes associated with the innate and adaptive immune systems that were non-dependent on microbial colonization. Surprisingly, L. lactis A12 alone induced benefits in fish compared to the microbial consortia, showing the highest increase in growth rate, survival during experimental infection with S. agalactiae, increased intestinal fold length, and the number of differentially expressed genes. Lastly, we conclude that a competitive exclusion culture is a reliable source of probiotics, and monostrain L. lactis A12 has comparable or even greater probiotic potential than the bacterial consortia.
Collapse
Affiliation(s)
- Javier Fernando Melo-Bolívar
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Ruth Yolanda Ruiz Pardo
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Luis Eduardo Díaz
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica- CNSG, Sede de Investigación Universitaria SIU, Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Howard Junca
- Microbiomas Foundation, Div. Ecogenomics & Holobionts, RG Microbial Ecology: Metabolism, Genomics & Evolution, Chía, Colombia
| | - Jorge Alberto Rodríguez Orjuela
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Luisa Marcela Villamil Diaz
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia.
| |
Collapse
|
8
|
Wu Q, Li H, Wang S, Zhang Z, Zhang Z, Jin T, Hu X, Zeng G. Differential Expression of Genes Related to Growth and Aflatoxin Synthesis in Aspergillus flavus When Inhibited by Bacillus velezensis Strain B2. Foods 2022; 11:foods11223620. [PMID: 36429212 PMCID: PMC9689179 DOI: 10.3390/foods11223620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus is a saprophytic soil fungus that infects and contaminates seed crops with the highly carcinogenic aflatoxin, which brings health hazards to animals and humans. In this study, bacterial strains B1 and B2 isolated from the rhizosphere soil of camellia sinensis had significant antagonistic activities against A. flavus. Based on the phylogenetic analysis of 16SrDNA gene sequence, bacterial strains B1 and B2 were identified as Bacillus tequilensis and Bacillus velezensis, respectively. In addition, the transcriptome analysis showed that some genes related to A. flavus growth and aflatoxin synthesis were differential expressed and 16 genes in the aflatoxin synthesis gene cluster showed down-regulation trends when inhibited by Bacillus velezensis strain B2. We guessed that the Bacillus velezensis strain B2 may secrete some secondary metabolites, which regulate the related gene transcription of A. flavus to inhibit growth and aflatoxin production. In summary, this work provided the foundation for the more effective biocontrol of A. flavus infection and aflatoxin contamination by the determination of differential expression of genes related to growth and aflatoxin synthesis in A. flavus when inhibited by B. velezensis strain B2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guohong Zeng
- Correspondence: ; Tel.: +86-0571-86843195; Fax: +86-571-86843196
| |
Collapse
|
9
|
Bavia L, Santiesteban-Lores LE, Carneiro MC, Prodocimo MM. Advances in the complement system of a teleost fish, Oreochromisniloticus. FISH & SHELLFISH IMMUNOLOGY 2022; 123:61-74. [PMID: 35227880 DOI: 10.1016/j.fsi.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
As the earliest known vertebrate possessing a complete immune system, teleost fish played an important role in the evolution of this system. The complement system is an ancient defense mechanism present in invertebrates and vertebrates. In teleost fish the complement system is formed by more than 35 circulating proteins, or found at the cell surface. This system is activated by three pathways: alternative, classical and lectin, generating functions such as the opsonization, lysis and modulation of the innate and adaptive immune responses. The complement system is an important immunological indicator that can be used to study and monitor the effects of environmental, nutritional, and infectious processes. The Nile tilapia (Oreochromis niloticus) is a teleost fish of great economic interest due to its characteristics of easy cultivation, high growth rates, and tolerance to adverse environmental conditions. In addition, Nile tilapia is an excellent model for ecotoxicological studies, however, there are very few studies reporting the performance of the complement system in this species after exposure to environmental pollutants. The aim of this review is to gather recent studies with to address the molecular and functional characterizations of the complement system in Nile tilapia and provide new insights about this defense mechanism. Looking to the future, we believe that the complement system analysis in Tilapia can be used as a biomarker of water quality and the general health status of fish.
Collapse
Affiliation(s)
- Lorena Bavia
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Lazara Elena Santiesteban-Lores
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Milena Carvalho Carneiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Marcusso PF, da Silva Claudiano G, Yunis-Aguinaga J, de Almeida Marinho-Neto F, Eto SF, Fernandes DC, Rosolem MC, Salvador R, Engracia de Moraes JR, Ruas de Moraes F. Immunogenicity in Oreochromis niloticus vaccinated with sonicated antigens against streptococcosis. FISH & SHELLFISH IMMUNOLOGY 2021; 115:134-141. [PMID: 34098067 DOI: 10.1016/j.fsi.2021.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Streptococcosis causes great economic losses in intensive culture of tilapia. Vaccination is the most effective and safest way to tackle infectious diseases. Thus, this study sought the more effective and safer antigenic fraction after sonication of Streptococcus agalactiae to elaborate a vaccine against streptococcosis in Nile tilapia. For this, twenty-one days after vaccination with different fractions (soluble and insoluble) of S. agalactiae, the fish were challenged with the homologous strain (LD50). Then, samples were taken at zero, 14, 28, 60 and 90 days post-vaccination (DPV, n = 7). Blood and organs (cranial kidney, spleen and liver) were collected from vaccinated and unvaccinated fish. Finally, insoluble fraction vaccine presented the best effect, resulting in a 100% relative percent of survival (RPS) and without clinical manifestations. In view of the results, it was to evaluate the role of the insoluble fraction of the antigen in the protective immunity against streptococcosis. The results indicate that the spleen might be the main organ in the vaccine response in Nile tilapia due to the great morphological and immunological differences in vaccinated fish, evidenced by the greater of melanomacrophage centers (MMC) and IgM + lymphocytes in relation to the non-vaccinated fish. At 60 DPV, it was observed the peak of the protective immunity related to the maximum concentration of proteins, circulating leukocytes, antibody titers in the serum and tissue changes with greater expression of IgM + and MMC number in the spleen and kidney of Oreochromis niloticus. Vaccination with insoluble fraction of S. agalactiae was safe and provided effective protection against streptococcosis with maximum protective response at 60 DPV.
Collapse
Affiliation(s)
- Paulo Fernandes Marcusso
- Institute of Agricultural Sciences, Federal University of the Jequitinhonha and Mucuri Valleys, Israel; Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Unesp, Brazil.
| | - Gustavo da Silva Claudiano
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Unesp, Brazil; Institute of Biodiversity and Forests, Federal University of Western Pará, UFOPA, Pará, Brazil; Postgraduated Program in Aquaculture/Aquaculture Center São Paulo State University (UNESP) Jaboticabal, São Paulo, Brazil.
| | - Jefferson Yunis-Aguinaga
- Scientific University of the South, Lima, Peru; Sea Institute of Peru, Callao, Peru; Postgraduated Program in Aquaculture/Aquaculture Center São Paulo State University (UNESP) Jaboticabal, São Paulo, Brazil.
| | - Fausto de Almeida Marinho-Neto
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Unesp, Brazil.
| | - Silas Fernandes Eto
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Unesp, Brazil; Department of Postgraduate in Health Sciences-PROCISA, Federal University of Roraima (UFRR), Boa Vista, Brazil.
| | - Dayanne Carla Fernandes
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Unesp, Brazil; Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| | - Mayara Caroline Rosolem
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Unesp, Brazil; Veterinary Pathologist Autonomous,.Brazil.
| | | | - Julieta Rodini Engracia de Moraes
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Unesp, Brazil; Postgraduated Program in Aquaculture/Aquaculture Center São Paulo State University (UNESP) Jaboticabal, São Paulo, Brazil.
| | - Flávio Ruas de Moraes
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Unesp, Brazil.
| |
Collapse
|
11
|
Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 2021; 59:627-633. [PMID: 34212287 DOI: 10.1007/s12275-021-1161-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Bacillus velezensis is a plant growth-promoting bacterium that can also inhibit plant pathogens. However, based on its properties, it is emerging as a probiotic in animal feed. This review focuses on the potential characteristics of B. velezensis for use as a probiotic in the animal feed industry. The review was conducted by collecting recently published articles from peer-reviewed journals. Google Scholar and PubMed were used as search engines to access published literature. Based on the information obtained, the data were divided into three groups to discuss the (i) probiotic characteristics of B. velezensis, (ii) probiotic potential for fish, and (iii) the future potential of this species to be developed as a probiotic for the animal feed industry. Different strains of B. velezensis isolated from different sources were found to have the ability to produce antimicrobial compounds and have a beneficial effect on the gut microbiota, with the potential to be a candidate probiotic in the animal feed industry. This review provides valuable information about the characteristics of B. velezensis, which can provide researchers with a better understanding of the use of this species in the animal feed industry.
Collapse
|
12
|
Zhang DF, Xiong XL, Wang YJ, Gao YX, Ren Y, Wang Q, Shi CB. Bacillus velezensis WLYS23 strain possesses antagonistic activity against hybrid snakehead bacterial pathogens. J Appl Microbiol 2021; 131:3056-3068. [PMID: 34037300 DOI: 10.1111/jam.15162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022]
Abstract
AIM The aims of this study were to screen an antagonistic probiotic for the prevention and control of bacterial diseases in snakehead fish and to evaluate the antimicrobial activities, biosafety and biocontrol effect of the antagonistic strain. METHODS AND RESULTS In this study, the WLYS23 strain exhibiting the most effective antagonistic properties against several fish pathogens was selected from the intestine of healthy snakehead fish. The strain was identified as Bacillus velezensis based on morphological, physiological and biochemical characteristics, and phylogenetic analysis. This strain showed amylase, cellulase, protease and lipase activities according to extracellular enzyme activity assays. Moreover, the cell-free extract of the WLYS23 strain exhibited strong antibacterial activity, with MICs of ≤64 μg ml-1 for most fish pathogens. Additionally, the cell-free extract was heat and pH stable, and resistant to protease, whereas their antimicrobial activities were significantly influenced by metal ions at high concentration. The WLYS23 strain and its cell-free extract were safe for snakehead and zebrafish. The disease resistance of snakehead fish was significantly increased following administration of the WLYS23 strain and its cell-free extract respectively. The complete genome of the WLYS23 strain was sequenced and found to harbour seven gene clusters encoding secondary metabolites with antimicrobial activity. CONCLUSION The WLYS23 strain possesses great potential as a biocontrol agent, which can be commercially developed to improve disease control in freshwater aquaculture. SIGNIFICANCE AND IMPACT OF THE STUDY Snakehead fish are important commercially farmed fish worldwide. However, the bacterial diseases caused by Aeromonas sp. and Nocardia seriolae in farmed snakehead fish lead to huge economic losses. Safe, economical and efficient probiotics are limited to prevent and control these diseases. Here, we provide a promising biocontrol agent with antagonistic activity against bacterial diseases of snakehead.
Collapse
Affiliation(s)
- D F Zhang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - X L Xiong
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Y J Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Y X Gao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Y Ren
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Q Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - C B Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
13
|
Chen M, Chen XQ, Tian LX, Liu YJ, Niu J. Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108791. [PMID: 32413493 DOI: 10.1016/j.cbpc.2020.108791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 11/18/2022]
Abstract
This study was to explore the impacts of water-soluble chitosan and mixed probiotics on growth performance, intestinal short-chain fatty acids (SCFAs) and immunity and ammonia resistance in Litopenaeus vannamei. Shrimp were fed one of four experimental diets including basal diet (CON), 0.10% water-soluble chitosan diet (WSC), 0.30% mixed probiotics (MP) and 0.10% water-soluble chitosan +0.30% mixed probiotics (SYN) for 8 weeks. Results showed shrimp fed with dietary MP and SYN diets could significantly improve growth performance and feed utilization in comparison with those of shrimp fed with CON diet (P < 0.05). Acetic acid content was significantly higher in shrimp fed with all supplemented diets compared to that in shrimp fed with CON diet (P < 0.05). Compared to shrimp fed with CON diet, dietary WSC and MP significantly influenced the contents and/or activities of aspartate aminotransferase (AST), total protein (TP), superoxide dismutase (SOD), lysozyme (LZM) in serum, SOD, malondialdehyde (MDA), acid phosphatase (ACP) in hepatopancreas and SOD and MDA in intestine. In addition, the gene expression levels of prophenoloxidase (proPO), penaiedin 3a (Pen-3a), crustin (Crustin), serine proteinase (SP), GPX and SOD in hepatopancreas, were significantly upregulated compared to those in CON diet at some time points (P < 0.05). Significantly higher survival rate in all supplemented diets were observed after ammonia challenge (P < 0.05). Therefore, the above results indicated dietary WSC and MP or SYN could enhance intestinal SCFAs content, stimulated antioxidant capacity and immune response, and increase the ammonia resistance of Litopenaeus vannamei. Besides, the growth performance was also improved by dietary MP and SYN.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xian-Quan Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|