1
|
Tian K, Zhang Y, Yao D, Tan D, Fu X, Chen R, Zhong M, Dong Y, Liu Y. Synergistic interactions in core microbiome Rhizobiales accelerate 1,4-dioxane biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135098. [PMID: 38970977 DOI: 10.1016/j.jhazmat.2024.135098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Next-generation sequencing (NGS) has revolutionized taxa identification within contaminant-degrading communities. However, uncovering a core degrading microbiome in diverse polluted environments and understanding its associated microbial interactions remains challenging. In this study, we isolated two distinct microbial consortia, namely MA-S and Cl-G, from separate environmental samples using 1,4-dioxane as a target pollutant. Both consortia exhibited a persistent prevalence of the phylum Proteobacteria, especially within the order Rhizobiales. Extensive analysis confirmed that Rhizobiales as the dominant microbial population (> 90 %) across successive degradation cycles, constituting the core degrading microbiome. Co-occurrence network analysis highlighted synergistic interactions within Rhizobiales, especially within the Shinella and Xanthobacter genera, facilitating efficient 1,4-dioxane degradation. The enrichment of Rhizobiales correlated with an increased abundance of essential genes such as PobA, HpaB, ADH, and ALDH. Shinella yambaruensis emerged as a key degrader in both consortia, identified through whole-genome sequencing and RNA-seq analysis, revealing genes implicated in 1,4-dioxane degradation pathways, such as PobA and HpaB. Direct and indirect co-cultivation experiments confirmed synergistic interaction between Shinella sp. and Xanthobacter sp., enhancing the degradation of 1,4-dioxane within the core microbiome Rhizobiales. Our findings advocate for integrating the core microbiome concept into engineered consortia to optimize 1,4-dioxane bioremediation strategies.
Collapse
Affiliation(s)
- Kun Tian
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yue Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dandan Yao
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ding Tan
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Xingjia Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ming Zhong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yuanhua Dong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yun Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
2
|
Cupples AM. Propane Monooxygenases in Soil Associated Metagenomes Align Most Closely to those in the Genera Kribbella, Amycolatopsis, Bradyrhizobium, Paraburkholderia and Burkholderia. Curr Microbiol 2024; 81:314. [PMID: 39162848 DOI: 10.1007/s00284-024-03829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Propanotrophs are a focus of interest because of their ability to degrade numerous environmental contaminants. To explore the phylogeny of microorganisms containing the propane monooxygenase gene cluster (prmABCD), NCBI bacterial genomes and publicly available soil associated metagenomes (from soils, rhizospheres, tree roots) were both examined. Nucleic acid sequences were collected only if all four subunits were located together, were of the expected length and were annotated as propane monooxygenase subunits. In the bacterial genomes, this resulted in data collection only from the phyla Actinomycetota and Pseudomonadota. For the soil associated metagenomes, reads from four studies were subject to quality control, assembly and annotation. Following this, the propane monooxygenase subunit nucleic acid sequences were collected and aligned to the collected bacterial sequences. In total, forty-two propane monooxygenase gene clusters were annotated from the soil associated metagenomes. The majority aligned closely to those from the Actinomycetota, followed by the Alphaproteobacteria, then the Betaproteobacteria. Actinomycetota aligning propane monooxygenase sequences were obtained from all four datasets and most closely aligned to the genera Kribbella and Amycolatopsis. Alphaproteobacteria aligning sequences largely originated from metagenomes associated with miscanthus and switchgrass rhizospheres and primarily aligned with the genera Bradyrhizobium, Acidiphilium and unclassified Rhizobiales. Betaproteobacteria aligning sequences were obtained from only the Red Oak root metagenomes and primarily aligned with the genera Paraburkholderia, Burkholderia and Caballeronia. Interestingly, sequences from the environmental metagenomes were not closely aligned to those from well-studied propanotrophs, such as Mycobacterium and Rhodococcus. Overall, the study highlights the previously unreported diversity of putative propanotrophs in environmental samples. The common occurrence of propane monooxygenase gene clusters has implications for their potential use for contaminant biodegradation.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Tesfamariam EG, Luo YH, Zhou C, Ye M, Krajmalnik-Brown R, Rittmann BE, Tang Y. Simultaneous biodegradation kinetics of 1,4-dioxane and ethane. Biodegradation 2024; 35:371-388. [PMID: 37917252 DOI: 10.1007/s10532-023-10058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane's common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was < 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was > 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.
Collapse
Affiliation(s)
- Ermias Gebrekrstos Tesfamariam
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A132, Tallahassee, FL, 32310, USA
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Ming Ye
- Department of Earth, Ocean and Atmospheric Science, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32304, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, 85281, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A132, Tallahassee, FL, 32310, USA.
| |
Collapse
|
4
|
Eshghdoostkhatami Z, Cupples AM. Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation. J Microbiol Methods 2024; 219:106908. [PMID: 38403133 DOI: 10.1016/j.mimet.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
1,4-Dioxane, a likely human carcinogen, is a co-contaminant at many chlorinated solvent contaminated sites. Conventional treatment technologies, such as carbon sorption or air stripping, are largely ineffective, and so many researchers have explored bioremediation for site clean-up. An important step towards this involves examining the occurrence of the functional genes associated with 1,4-dioxane biodegradation. The current research explored potential biomarkers for 1,4-dioxane in three mixed microbial communities (wetland sediment, agricultural soil, impacted site sediment) using monooxygenase targeted amplicon sequencing, followed by quantitative PCR (qPCR). A BLAST analysis of the sequencing data detected only two of the genes previously associated with 1,4-dioxane metabolism or co-metabolism, namely propane monooxygenase (prmA) from Rhodococcus jostii RHA1 and Rhodococcus sp. RR1. To investigate this further, qPCR primers and probes were designed, and the assays were used to enumerate prmA gene copies in the three communities. Gene copies of Rhodococcus RR1 prmA were detected in all three, while gene copies of Rhodococcus jostii RHA1 prmA were detected in two of the three sample types (except impacted site sediment). Further, there was a statistically significant increase in RR1 prmA gene copies in the microcosms inoculated with impacted site sediment following 1,4-dioxane biodegradation compared to the control microcosms (no 1,4-dioxane) or to the initial copy numbers before incubation. Overall, the results indicate the importance of Rhodococcus associated prmA, compared to other 1,4-dioxane degrading associated biomarkers, in three different microbial communities. Also, the newly designed qPCR assays provide a platform for others to investigate 1,4-dioxane biodegradation potential in mixed communities and should be of particular interest to those considering bioremediation as a potential 1,4-dioxane remediation approach.
Collapse
Affiliation(s)
- Zohre Eshghdoostkhatami
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Liu Y, Wang F, Wang Z, Xiang L, Fu Y, Zhao Z, Kengara FO, Mei Z, He C, Bian Y, Naidu R, Jiang X. Soil properties and organochlorine compounds co-shape the microbial community structure: A case study of an obsolete site. ENVIRONMENTAL RESEARCH 2024; 240:117589. [PMID: 37926227 DOI: 10.1016/j.envres.2023.117589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Organochlorine compounds (OCs) such as chlorobenzenes (CB) are persistent organic pollutants that are ubiquitous in soils at organochlorine pesticides (OCP) production sites. Long-term contamination with OCs might alter the soil microbial structure and further affect soil functions. However, the effects of OCs regarding the shaping of microbial community structures in the soils of OCs-contaminated sites remain obscure, especially in the vertical soil profile where pollutants are highly concealed. Hence this paper explored the status and causes of OCs pollution (CB, hexachlorocyclohexane (HCH), and dichlorodiphenyltrichloroethane (DDT)) in an obsolete site, and its combined effects with soil properties (pH, available phosphorus (AP), dissolved organic carbon (DOC), etc) on microbial community structure. The mean total concentration of OCs in the subsoils was up to 996 times higher than that in the topsoils, with CB constituting over 90% of OCs in the subsoil. Historical causes, anthropogenic effects, soil texture, and the nature of OCs contributed to the differences in the spatial distribution of OCs. Redundancy analysis revealed that both the soil properties and OCs were important factors in shaping microbial composition and diversity. Variation partitioning analysis further indicated that soil properties had a greater impact on microbial community structure than OCs. Significant differences in microbial composition between topsoils and subsoils were observed through linear discriminant analysis effect size (LEfSe) analysis, primarily driven by different pollutant conditions. Additionally, co-occurrence network analysis indicated that heavily contaminated subsoils exhibited closer and more intricate bacterial community interactions compared to lightly contaminated topsoils. This work reveals the impact of environmental factors in co-shaping the structure of soil microbial communities. These findings advance our understanding of the intricate interplay among organochlorine pollutants, soil properties, and microbial communities, and provides valuable insights into devising effective management strategies in OCs-contaminated soils.
Collapse
Affiliation(s)
- Yu Liu
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Leilei Xiang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Zhao
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhi Mei
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongrong Bian
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xin Jiang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Tian K, Zhang Y, Chen R, Tan D, Zhong M, Yao D, Dong Y, Liu Y. Self-assembling a 1,4-dioxane-degrading consortium and identifying the key role of Shinella sp. through dilution-to-extinction and reculturing. Microbiol Spectr 2023; 11:e0178723. [PMID: 37882576 PMCID: PMC10714792 DOI: 10.1128/spectrum.01787-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/26/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Assembling a functional microbial consortium and identifying key degraders involved in the degradation of 1,4-dioxane are crucial for the design of synergistic consortia used in enhancing the bioremediation of 1,4-dioxane-contaminated sites. However, due to the vast diversity of microbes, assembling a functional consortium and identifying novel degraders through a simple method remain a challenge. In this study, we reassembled 1,4-dioxane-degrading microbial consortia using a simple and easy-to-operate method by combining dilution-to-extinction and reculture techniques. We combined differential analysis of community structure and metabolic function and confirmed that Shinella species have a stronger 1,4-dioxane degradation ability than Xanthobacter species in the enriched consortium. In addition, a new dioxane-degrading bacterium was isolated, Shinella yambaruensis, which verified our findings. These results demonstrate that DTE and reculture techniques can be used beyond diversity reduction to assemble functional microbial communities, particularly to identify key degraders in contaminant-degrading consortia.
Collapse
Affiliation(s)
- Kun Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yue Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ding Tan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Ming Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Dandan Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
7
|
Tang Y. A Review of Challenges and Opportunities for Microbially Removing 1,4-Dioxane to Meet Drinking-Water and Groundwater Guidelines. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 31:100419. [PMID: 36582465 PMCID: PMC9794176 DOI: 10.1016/j.coesh.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
1,4-Dioxane is an emerging contaminant in drinking-water sources and contaminated sites. Microbial removal of 1,4-dioxane has attracted a lot of attention, but faces a challenge: being not able to continuously metabolize 1,4-dioxane to below most drinking-water and groundwater guidelines. The 1,4-dioxane concentrations in most drinking-water sources and contaminated sites are too low to sustain biomass growth. This minireview discusses strategies that may potentially address the challenge. The strategies include: 1) finding oligotrophs for which the minimum 1,4-dioxane concentrations to sustain biomass are low, 2) determining conditions that maximize 1,4-dioxane co-metabolism or co-oxidation, 3) creating novel materials as biomass carriers and contaminant concentrators, and 4) lowering the life-cycle costs of technologies that combine biodegradation with (electro)chemical oxidation or phytoremediation.
Collapse
Affiliation(s)
- Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A130, Tallahassee, Florida 32310, USA
| |
Collapse
|
8
|
Tawfik A, Al-Sayed A, Hassan GK, Nasr M, El-Shafai SA, Alhajeri NS, Khan MS, Akhtar MS, Ahmad Z, Rojas P, Sanz JL. Electron donor addition for stimulating the microbial degradation of 1,4 dioxane by sequential batch membrane bioreactor: A techno-economic approach. CHEMOSPHERE 2022; 306:135580. [PMID: 35810864 DOI: 10.1016/j.chemosphere.2022.135580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The presence of 1,4 dioxane in wastewater is associated with severe health and environmental issues. The removal of this toxic contaminant from the industrial effluents prior to final disposal is necessary. The study comprehensively evaluates the performance of sequential batch membrane bioreactor (MBR) for treating wastewater laden with 1,4 dioxane. Acetate was supplemented to the wastewater feed as an electron donor for enhancing and stimulating the microbial growing activities towards the degradation of 1,4 dioxane. The removal efficiency of 1,4 dioxane was maximized to 87.5 ± 6.8% using an acetate to dioxane (A/D) ratio of 4.0, which was substantially dropped to 31.06 ± 3.7% without acetate addition. Ethylene glycol, glyoxylic acid, glycolic acid, and oxalic acid were the main metabolites of 1,4 dioxane biodegradation using mixed culture bacteria. The 1,4 dioxane degrading bacteria, particularly the genus of Acinetobacter, were promoted to 92% at the A/D ratio of 4.0. This condition encouraged as well the increase of the main 1,4 dioxane degraders, i.e., Xanthomonadales (12.5%) and Pseudomonadales (9.1%). However, 50% of the Sphingobacteriales and 82.5% of Planctomycetes were reduced due to the inhibition effect of the 1,4 dioxane contaminate. Similarly, the relative abundance of Firmicutes, Verrucomicrobia, Chlamydiae, Actinobacteria, Chloroflexi, and Nitrospirae was reduced in the MBR at the A/D ratio of 4.0. The results derived from the microbial analysis and metabolites detection at different A/D ratios indicated that acetate supplementation (as an electron donor) maintained an essential role in encouraging the microorganisms to produce the monooxygenase enzymes responsible for the biodegradation process. Economic feasibility of such a MBR system showed that for a designed flow rate of 30 m3∙d-1, the payback period from reusing the treated wastewater would reach 6.6 yr. The results strongly recommend the utilization of mixed culture bacteria growing on acetate for removing 1,4 dioxane from the wastewater industry, achieving dual environmental and economic benefits.
Collapse
Affiliation(s)
- Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Aly Al-Sayed
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Gamal K Hassan
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Saber A El-Shafai
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Nawaf S Alhajeri
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Mohd Shariq Khan
- Department of Chemical Engineering, Dhofar University, Salalah, 211, Oman
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Patricia Rojas
- Universidad Autonoma de Madrid, Department of Molecular Biology, Madrid, 28049, Spain
| | - Jose L Sanz
- Universidad Autonoma de Madrid, Department of Molecular Biology, Madrid, 28049, Spain
| |
Collapse
|
9
|
Inoue D, Hisada K, Ike M. Effectiveness of tetrahydrofuran at enhancing the 1,4-dioxane degradation ability of activated sludge lacking prior exposure to 1,4-dioxane. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1707-1718. [PMID: 36240306 DOI: 10.2166/wst.2022.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
1,4-dioxane (DX) is a contaminant of emerging concern in water environments. The enrichment of DX-degrading bacteria indigenous to activated sludge is key for the efficient biological removal of DX in wastewater. To identify an effective substrate, which enables the selective enrichment of DX-degrading bacteria and has lower toxicity and persistence than DX, this study explored the effectiveness of tetrahydrofuran (THF) at enhancing the DX degradation ability of activated sludge without historical exposure to DX. Although the activated sludge initially exhibited negligible ability to degrade DX (100 mg-C/L) as the sole carbon source, the repeated batch cultivation on THF could enrich bacterial populations capable of degrading DX, inducing the DX degradation ability in activated sludge as effectively as DX did. The THF-enrichment culture after 4 weeks degraded 100 mg-C/L DX almost completely within 21 d. Sequencing analyses revealed that soluble di-iron monooxygenase group 5C, including THF/DX monooxygenase, would play a dominant role in the initial oxidation of DX in THF-enrichment culture, which completely differed from the enrichment culture cultivated on DX. The results indicate that THF can be applied as an effective substrate to enhance the DX degradation ability of microbial consortia, irrespective of the intrinsic ability.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| | - Kazuki Hisada
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| |
Collapse
|
10
|
Dai C, Wu H, Wang X, Zhao K, Lu Z. Network and meta-omics reveal the cooperation patterns and mechanisms in an efficient 1,4-dioxane-degrading microbial consortium. CHEMOSPHERE 2022; 301:134723. [PMID: 35489450 DOI: 10.1016/j.chemosphere.2022.134723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane is an emerging wastewater contaminant with probable human carcinogenicity. Our current understanding of microbial interactions during 1,4-dioxane biodegradation process in mixed cultures is limited. Here, we applied metagenomic, metatranscriptomic and co-occurrence network analyses to unraveling the microbial cooperation between degrader and non-degraders in an efficient 1,4-dioxane-degrading microbial consortium CH1. A 1,4-dioxane-degrading bacterium, Ancylobacter polymorphus ZM13, was isolated from CH1 and had a potential of being one of the important degraders due to its high relative abundance, highly expressed monooxygenase genes tmoABCDEF and high betweenness centrality of networks. The strain ZM13 cooperated obviously with 6 bacterial genera in the network, among which Xanthobacter and Mesorhizobium could be involved in the intermediates metabolism with responsible genes encoding alcohol dehydrogenase (adh), aldehyde dehydrogenase (aldh), glycolate oxidase (glcDEF), glyoxylate carboligase (gcl), malate synthase (glcB) and 2-isopropylmalate synthase (leuA) differentially high-expressed. Also, 1,4-dioxane facilitated the shift of biodiversity and function of CH1, and those cooperators cooperated with ZM13 in the way of providing amino acids or fatty acids, as well as relieving environmental stresses to promote biodegradation. These results provide new insights into our understandings of the microbial interactions during 1,4-dioxane degradation, and have important implications for predicting microbial cooperation and constructing efficient and stable synthetic 1,4-dioxane-degrading consortia for practical remediation.
Collapse
Affiliation(s)
- Chuhan Dai
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Environmental Potential for Microbial 1,4-Dioxane Degradation Is Sparse despite Mobile Elements Playing a Role in Trait Distribution. Appl Environ Microbiol 2022; 88:e0209121. [PMID: 35297726 DOI: 10.1128/aem.02091-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,4-Dioxane (dioxane) is an emerging contaminant of concern for which bioremediation is seen as a promising solution. To date, eight distinct gene families have been implicated in dioxane degradation, though only dioxane monooxygenase (DXMO) from Pseudonocardia dioxanivorans is routinely used as a biomarker in environmental surveys. In order to assess the functional and taxonomic diversity of bacteria capable of dioxane degradation, we collated existing, poorly-organized information on known biodegraders to create a curated suite of biomarkers with confidence levels for assessing 1,4-dioxane degradation potential. The characterized enzyme systems for dioxane degradation are frequently found on mobile elements, and we identified that many of the curated biomarkers are associated with other hallmarks of genomic rearrangements, indicating lateral gene transfer plays a role in dissemination of this trait. This is contrasted by the extremely limited phylogenetic distribution of known dioxane degraders, where all representatives belong to four classes within three bacterial phyla. Based on the curated set of expanded biomarkers, a search of more than 11,000 publicly available metagenomes identified a sparse and taxonomically limited distribution of potential dioxane degradation proteins. Our work provides an important and necessary structure to the current knowledge base for dioxane degradation and clarifies the potential for natural attenuation of dioxane across different environments. It further highlights a disconnect between the apparent mobility of these gene families and their limited distributions, indicating dioxane degradation may be difficult to integrate into a microorganism's metabolism. IMPORTANCE New regulatory limits for 1,4-dioxane in groundwater have been proposed or adopted in many countries, including the United States and Canada, generating a direct need for remediation options as well as better tools for assessing the fate of dioxane in an environment. A comprehensive suite of biomarkers associated with dioxane degradation was identified and then leveraged to examine the global potential for dioxane degradation in natural and engineered environments. We identified consistent differences in the dioxane-degrading gene families associated with terrestrial, aquatic, and wetland environments, indicating reliance on a single biomarker for assessing natural attenuation of dioxane is likely to miss key players. Most environments do not currently host the capacity for dioxane degradation-the sparse distribution of dioxane degradation potential highlights the need for bioaugmentation approaches over biostimulation of naturally occurring microbial communities.
Collapse
|
12
|
Predicted functional genes for the biodegradation of xenobiotics in groundwater and sediment at two contaminated naval sites. Appl Microbiol Biotechnol 2022; 106:835-853. [DOI: 10.1007/s00253-021-11756-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 11/02/2022]
|
13
|
Dang H, Cupples AM. Identification of the phylotypes involved in cis-dichloroethene and 1,4-dioxane biodegradation in soil microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148690. [PMID: 34198077 DOI: 10.1016/j.scitotenv.2021.148690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Co-contamination with chlorinated compounds and 1,4-dioxane has been reported at many sites. Recently, there has been an increased interest in bioremediation because of the potential to degrade multiple contaminants concurrently. Towards improving bioremediation efficacy, the current study examined laboratory microcosms (inoculated separately with two soils) to determine the phylotypes and functional genes associated with the biodegradation of two common co-contaminants (cis-dichloroethene [cDCE] and 1,4-dioxane). The impact of amending microcosms with lactate on cDCE and 1,4-dioxane biodegradation was also investigated. The presence of either lactate or cDCE did not impact 1,4-dioxane biodegradation one of the two soils. Lactate appeared to improve the initiation of the biological removal of cDCE in microcosms inoculated with either soil. Stable isotope probing (SIP) was then used to determine which phylotypes were actively involved in carbon uptake from cDCE and 1,4-dioxane in both soil communities. The most enriched phylotypes for 13C assimilation from 1,4-dioxane included Rhodopseudomonas and Rhodanobacter. Propane monooxygenase was predicted (by PICRUSt2) to be dominant in the 1,4-dioxane amended microbial communities and propane monooxygenase gene abundance values correlated with other enriched (but less abundant) phylotypes for 13C-1,4-dioxane assimilation. The dominant enriched phylotypes for 13C assimilation from cDCE included Bacteriovorax, Pseudomonas and Sphingomonas. In the cDCE amended soil microcosms, PICRUSt2 predicted the presence of DNA encoding glutathione S-transferase (a known cDCE upregulated enzyme). Overall, the work demonstrated concurrent removal of cDCE and 1,4-dioxane by indigenous soil microbial communities and the enhancement of cDCE removal by lactate. The data generated on the phylotypes responsible for carbon uptake (as determined by SIP) could be incorporated into diagnostic molecular methods for site characterization. The results suggest concurrent biodegradation of cDCE and 1,4-dioxane should be considered for chlorinated solvent site remediation.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|