1
|
Ding M, Wang W, Lu Z, Sun Y, Qiao X, Dai M, Zhao G. Catalase-peroxidase StKatG2 from Salinicola tamaricis: a versatile Mn(II) oxidase that decolorizes malachite green. Front Microbiol 2024; 15:1478305. [PMID: 39564493 PMCID: PMC11573757 DOI: 10.3389/fmicb.2024.1478305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Manganese (Mn) oxidation processes have garnered significant attention recently due to their potential for degrading organic pollutants. These processes are primarily catalyzed by Mn(II) oxidases. Salinicola tamaricis F01, an endophytic bacterium derived from wetland plants, has demonstrated Mn(II)-oxidizing capacity. In this study, a catalase-peroxidase, StKatG2, was cloned and overexpressed in Escherichia coli from the strain F01. The purified recombinant StKatG2 exhibited Mn(II)-oxidizing activity with K m and K cat values of 2.529 mmol/L and 2.82 min-1, respectively. Optimal catalytic conditions for StKatG2 were observed at pH 7.5 and 55°C, with 45.1% activity retention after an 8-h exposure to 80°C. The biogenic manganese oxides produced by StKatG2 exhibited mixed-valence states with Mn(II), including Mn(III), Mn(IV), and Mn(VII). Furthermore, StKatG2 demonstrated superior decolorization efficiency for malachite green (MG), achieving decolorization rates of 73.38% for 20 mg/L MG and 60.08% for 50 mg/L MG, while degrading MG into 4-(dimethylamino)benzophenone. Therefore, the catalase-peroxidase StKatG2 exhibits multifunctionality in Mn(II)-oxidizing activity and has the potential to serve as an environmentally friendly enzyme for MG removal.
Collapse
Affiliation(s)
- Mengyao Ding
- College of Life Science, Shandong Normal University, Jinan, China
| | - Wenjing Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Zhenkun Lu
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yuhui Sun
- College of Life Science, Shandong Normal University, Jinan, China
| | - Xinzhen Qiao
- College of Life Science, Shandong Normal University, Jinan, China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, China
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Wadhawan G, Kalra A, Gupta A. Potential of halophiles and alkaliphiles in bioremediation of azo dyes-laden textile wastewater: a review. 3 Biotech 2024; 14:194. [PMID: 39131176 PMCID: PMC11306850 DOI: 10.1007/s13205-024-04036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Azo dye-laden textile wastewater must be treated before release due to various health and environmental concerns. Bioremediation of textile wastewater, however, is a challenge owing to its alkaline and saline nature as mesophilic microbes, in general, are either not able to thrive or show less efficiency under such hostile environment. Thus, pre-treatment for neutralization or salinity removal becomes a prerequisite before applying microbes for treatment, causing extra economical and technical burden. Extremophilic bacteria can be the promising bioremediating tool because of their inherent ability to survive and show toxicants removal capability under such extreme conditions without need of pre-treatment. Among extremophiles, halophilic and alkaliphilic bacteria which are naturally adapted to high salt and pH are of special interest for the decolorization of saline-alkaline-rich textile wastewater. The current review article is an attempt to provide an overview of the bioremediation of azo dyes and azo dye-laden textile wastewater using these two classes of extremophilic bacteria. The harmful effects of azo dyes on human health and environment have been discussed herein. Halo-alkaliphilic bacteria circumvent the extreme conditions by various adaptations, e.g., production of certain enzymes, adjustment at the protein level, pH homeostasis, and other structural adaptations that have been highlighted in this review. The unique properties of alkaliphiles and halophiles, to not only sustain but also harboring high dye removal competence at high pH and salt concentration, make them a good candidate for designing future bioremediation strategies for the management of alkaline, salt, and azo dye-laden industrial wastewaters.
Collapse
Affiliation(s)
- Gunisha Wadhawan
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anuja Kalra
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| |
Collapse
|
3
|
Webster LJ, Villa-Gomez D, Brown R, Clarke W, Schenk PM. A synthetic biology approach for the treatment of pollutants with microalgae. Front Bioeng Biotechnol 2024; 12:1379301. [PMID: 38646010 PMCID: PMC11032018 DOI: 10.3389/fbioe.2024.1379301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
The increase in global population and industrial development has led to a significant release of organic and inorganic pollutants into water streams, threatening human health and ecosystems. Microalgae, encompassing eukaryotic protists and prokaryotic cyanobacteria, have emerged as a sustainable and cost-effective solution for removing these pollutants and mitigating carbon emissions. Various microalgae species, such as C. vulgaris, P. tricornutum, N. oceanica, A. platensis, and C. reinhardtii, have demonstrated their ability to eliminate heavy metals, salinity, plastics, and pesticides. Synthetic biology holds the potential to enhance microalgae-based technologies by broadening the scope of treatment targets and improving pollutant removal rates. This review provides an overview of the recent advances in the synthetic biology of microalgae, focusing on genetic engineering tools to facilitate the removal of inorganic (heavy metals and salinity) and organic (pesticides and plastics) compounds. The development of these tools is crucial for enhancing pollutant removal mechanisms through gene expression manipulation, DNA introduction into cells, and the generation of mutants with altered phenotypes. Additionally, the review discusses the principles of synthetic biology tools, emphasizing the significance of genetic engineering in targeting specific metabolic pathways and creating phenotypic changes. It also explores the use of precise engineering tools, such as CRISPR/Cas9 and TALENs, to adapt genetic engineering to various microalgae species. The review concludes that there is much potential for synthetic biology based approaches for pollutant removal using microalgae, but there is a need for expansion of the tools involved, including the development of universal cloning toolkits for the efficient and rapid assembly of mutants and transgenic expression strains, and the need for adaptation of genetic engineering tools to a wider range of microalgae species.
Collapse
Affiliation(s)
- Luke J. Webster
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Denys Villa-Gomez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Reuben Brown
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - William Clarke
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
- Algae Biotechnology, Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Das S, Cherwoo L, Singh R. Decoding dye degradation: Microbial remediation of textile industry effluents. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:64-76. [PMID: 39416919 PMCID: PMC11446375 DOI: 10.1016/j.biotno.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 10/19/2024]
Abstract
The extensive use of chemical dyes, primarily Azo and anthraquinone dyes, in textiles has resulted in their alarming release into the environment by textile industries. The introduction of heavy metals into these dyes leads to an increase in Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and water toxicity. Conventional physicochemical methods for treating textile effluents are costly and energy-intensive. Here introduction of new strategies is eminent, microbial bioremediation for the biodegradation and detoxification of these hazardous dyes, possesses as an innovative solution for the existing problem, discussed are specific groups of bacteria, fungi, and algae which could be one of the potential decolorizing agents that could replace the majority of other expensive processes in textile wastewater treatment by using enzymes like peroxidase, laccase, and azoreductase. These enzymes catalyzes chemical reactions that break down the dye molecules into less harmful substances. Additionally, novel strategies and advancements to enhance the effectiveness of these microbes and their products are comprehensively discussed.
Collapse
Affiliation(s)
- Soumyajit Das
- Department of Biotechnology, Chandigarh University, Punjab, India
| | - Lubhan Cherwoo
- CSIR- Central Scientific Instruments Organisation, Chandigarh, India
| | - Ravinder Singh
- Department of Biotechnology, Chandigarh University, Punjab, India
| |
Collapse
|
5
|
Datta D, Weiss EL, Wangpraseurt D, Hild E, Chen S, Golden JW, Golden SS, Pokorski JK. Phenotypically complex living materials containing engineered cyanobacteria. Nat Commun 2023; 14:4742. [PMID: 37550278 PMCID: PMC10406891 DOI: 10.1038/s41467-023-40265-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
The field of engineered living materials lies at the intersection of materials science and synthetic biology with the aim of developing materials that can sense and respond to the environment. In this study, we use 3D printing to fabricate a cyanobacterial biocomposite material capable of producing multiple functional outputs in response to an external chemical stimulus and demonstrate the advantages of utilizing additive manufacturing techniques in controlling the shape of the fabricated photosynthetic material. As an initial proof-of-concept, a synthetic riboswitch is used to regulate the expression of a yellow fluorescent protein reporter in Synechococcus elongatus PCC 7942 within a hydrogel matrix. Subsequently, a strain of S. elongatus is engineered to produce an oxidative laccase enzyme; when printed within a hydrogel matrix the responsive biomaterial can decolorize a common textile dye pollutant, indigo carmine, potentially serving as a tool in environmental bioremediation. Finally, cells are engineered for inducible cell death to eliminate their presence once their activity is no longer required, which is an important function for biocontainment and minimizing environmental impact. By integrating genetically engineered stimuli-responsive cyanobacteria in volumetric 3D-printed designs, we demonstrate programmable photosynthetic biocomposite materials capable of producing functional outputs including, but not limited to, bioremediation.
Collapse
Affiliation(s)
- Debika Datta
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Elliot L Weiss
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Daniel Wangpraseurt
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Erica Hild
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Shaochen Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - James W Golden
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Susan S Golden
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| | - Jonathan K Pokorski
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering and Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Lima NSM, Gomes-Pepe ES, Kock FVC, Colnago LA, de Macedo Lemos EG. Dynamics of the role of LacMeta laccase in the complete degradation and detoxification of malachite green. World J Microbiol Biotechnol 2023; 39:127. [PMID: 36941452 DOI: 10.1007/s11274-023-03572-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Laccases highlight for xenobiotic bioremediation, as well as application in the fine chemical, textile, biofuel and food industries. In a previous work, we described the preliminary characterization of laccase LacMeta, a promising enzyme for the bioremediation of dyes, able to decolorization malachite green (MG), trypan blue, methylene blue. Here we demonstrate that LacMeta is indeed suitable for the complete degradation and detoxification of MG dye, not just for its discoloration, since some works show false positives due to the formation of colorless intermediates such as leucomalachite. The optimal pH and temperature parameters of LacMeta were 5.0 and 50 °C, respectively (MG as substrate). LacMeta was tolerant of up to 10 mmol L- 1 EDTA (82%) and up to 5% (V/V) acetone (91%) and methanol (71%), while SDS promoted severe inhibition. For ions, a high tolerance to cobalt, zinc, manganese, and calcium (10 mmol L- 1) was also observed (> 90%). Even under high-salinity conditions (1 mol L- 1 NaCl), the residual bleaching activity of the dye remained at 61%. Furthermore, the bleaching product of MG did not inhibit the germination of sorghum and tomato seeds and was inert to the vegetative structures of the germinated seedlings. Additionally, this treatment effectively reduced the cytotoxic effect of the dye on microorganisms (Escherichia coli and Azospirillum brasilense), which can be explained by H-NMR spectral analysis results since LacMeta completely degraded the peak signals corresponding to the aromatic rings in the dye, demonstrating extreme efficiency in the bioremediation of the xenobiotic at high concentrations (50 mg L- 1).
Collapse
Affiliation(s)
- Natália Sarmanho Monteiro Lima
- Department of Agricultural, Livestock and Environmental Biotechnology (UNESP), Faculty of Agricultural and Veterinary Sciences (FCAV), Jaboticabal, São Paulo State, 14884-900, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, 14884-900, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo State, Brazil
| | - Elisângela Soares Gomes-Pepe
- Department of Agricultural, Livestock and Environmental Biotechnology (UNESP), Faculty of Agricultural and Veterinary Sciences (FCAV), Jaboticabal, São Paulo State, 14884-900, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, 14884-900, Brazil
| | | | - Luiz Alberto Colnago
- Embrapa Instrumentation, Rua 15 de Novembro 1452, São Carlos, SP, 13560-970, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Department of Agricultural, Livestock and Environmental Biotechnology (UNESP), Faculty of Agricultural and Veterinary Sciences (FCAV), Jaboticabal, São Paulo State, 14884-900, Brazil.
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, 14884-900, Brazil.
| |
Collapse
|
7
|
Liu Y, Zhong D, He Y, Jiang J, Xie W, Tang Z, Qiu J, Luo J, Wang X. Photoresponsive Hydrogel-Coated Upconversion Cyanobacteria Nanocapsules for Myocardial Infarction Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202920. [PMID: 36045439 PMCID: PMC9596827 DOI: 10.1002/advs.202202920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Myocardial infarction (MI) is a common disease that seriously threatens human health. It is noteworthy that oxygen is one of the key factors in the regulation of MI pathology procession: the controllable hypoxic microenvironment can enhance the tolerance of cardiac myocytes (CMs) and oxygen therapy regulates the immune microenvironment to repair the myocardial injury. Thus, the development of an oxygen-controllable treatment is critically important to unify MI prevention and timely treatment. Here, a hydrogel encapsulated upconversion cyanobacterium nanocapsule for both MI prevention and treatment is successfully synthesized. The engineered cyanobacteria can consume oxygen via respiration to generate a hypoxic microenvironment, resulting in the upregulation of heat shock protein70 (HSP70), which can enhance the tolerance of CMs for MI. When necessary, under 980 nm near-infrared (NIR) irradiation, the system releases photosynthetic oxygen through upconversion luminescence (UCL) to inhibit macrophage M1 polarization, and downregulates pro-inflammatory cytokines IL-6 and tumor necrosis factor-α (TNF-α), thereby repairing myocardial injury. To sum up, a photoresponsive upconversion cyanobacterium nanocapsule is developed, which can achieve MI prevention and treatment for only one injection via NIR-defined respiration and photosynthesis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Rehabilitation Medicinethe Second Affiliated Hospital of Nanchang UniversityNanchang UniversityNanchang330006China
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Da Zhong
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
- School of Chemistry and Chemical Engineering of Nanchang UniversityNanchang UniversityNanchang330088China
| | - Yizhe He
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Junkai Jiang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Weichang Xie
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Zhibo Tang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Jianbin Qiu
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Jun Luo
- Department of Rehabilitation Medicinethe Second Affiliated Hospital of Nanchang UniversityNanchang UniversityNanchang330006China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
- School of Chemistry and Chemical Engineering of Nanchang UniversityNanchang UniversityNanchang330088China
| |
Collapse
|
8
|
Enhanced Removal of Malachite Green Using Calcium-Functionalized Magnetic Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063247. [PMID: 35328937 PMCID: PMC8954663 DOI: 10.3390/ijerph19063247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
Abstract
To efficiently remove malachite green (MG), a novel calcium-functionalized magnetic biochar (Ca/MBC) was fabricated via a two-step pyrolysis method. Iron-containing oxides endowed the target complexes with magnetic properties, especially the chemotactic binding ability with MG, and the addition of calcium significantly changed the morphology of the material and improved its adsorption performance, especially the chemotactic binding ability with MG, which could be confirmed through FTIR, XPS, and adsorption experiments. Electrostatic adsorption, ligand exchange, and hydrogen bonding acted as essential drivers for an enhanced adsorption process, and the maximum theoretical adsorption capacity was up to 12,187.57 mg/g. Ca/MBC maintained a higher adsorption capacity at pH = 4–12, and after five adsorption–desorption cycles, the adsorption capacity and adsorption rate of MG remained at 1424.2 mg/g and 71.21%, highlighting the advantages of Ca/MBC on adsorbing MG. This study suggests that biochar can be modified by a green synthesis approach to produce calcium-functionalized magnetic biochar with excellent MG removal capacity. The synthetic material can not only remove pollutants from water but also provide an efficient way for soil remediation.
Collapse
|
9
|
Sun Y, Zhang Y, Li W, Zhang W, Xu Z, Dai M, Zhao G. Combination of the endophytic manganese-oxidizing bacterium Pantoea eucrina SS01 and biogenic Mn oxides: An efficient and sustainable complex in degradation and detoxification of malachite green. CHEMOSPHERE 2021; 280:130785. [PMID: 33971420 DOI: 10.1016/j.chemosphere.2021.130785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Recently, Mn oxides (MnOxs) have been attracting considerable interest in the oxidation of organic pollutants. However, the reduction of MnOx in these reactions leads to the deactivation of the catalyst, which must be frequently regenerated. We evaluated the application of a manganese-oxidizing bacterium (MOB) and MnOx in removing toxic dyes. We studied the co-function of a plant-endophytic MOB, Pantoea eucrina SS01, with its bio-generated MnOx and evaluated the detoxification activity and chemical transformation mechanisms of the complex in malachite green (MG) degradation. We found a synergistic effect between MnOx and the strain. Particularly, strain SS01 could adsorb MG but could not degrade it, whereas the addition of Mn(II) promoted MG degradation by the formation of a complex containing the bacterium and MnOx aggregates (SS01-bio-MnOx), with distinct morphology characteristics. The complex showed a marked sustainability in the degradation of MG into less toxic or non-toxic metabolites. In this process, strain SS01 might have enhanced the regeneration of MnOx, accelerating MG degradation. Our data not only contribute to understanding the mechanism of MG removal by the SS01-bio-MnOx complex, but also provide a scientific basis for the future application of MOB and MnOx.
Collapse
Affiliation(s)
- Yuankai Sun
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yonggang Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wenzhe Li
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wenchang Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhenlu Xu
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
10
|
Ledakowicz S, Paździor K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021; 26:molecules26040870. [PMID: 33562176 PMCID: PMC7914684 DOI: 10.3390/molecules26040870] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 3 years alone, over 10,000 publications have appeared on the topic of dye removal, including over 300 reviews. Thus, the topic is very relevant, although there are few articles on the practical applications on an industrial scale of the results obtained in research laboratories. Therefore, in this review, we focus on advanced oxidation methods integrated with biological methods, widely recognized as highly efficient treatments for recalcitrant wastewater, that have the best chance of industrial application. It is extremely important to know all the phenomena and mechanisms that occur during the process of removing dyestuffs and the products of their degradation from wastewater to prevent their penetration into drinking water sources. Therefore, particular attention is paid to understanding the mechanisms of both chemical and biological degradation of dyes, and the kinetics of these processes, which are important from a design point of view, as well as the performance and implementation of these operations on a larger scale.
Collapse
|