1
|
Lenferink WB, van Alen TA, Jetten MSM, Op den Camp HJM, van Kessel MAHJ, Lücker S. Genomic analysis of the class Phycisphaerae reveals a versatile group of complex carbon-degrading bacteria. Antonie Van Leeuwenhoek 2024; 117:104. [PMID: 39043958 PMCID: PMC11266412 DOI: 10.1007/s10482-024-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
Bacteria of the phylum Planctomycetota have received much attention over the years due to their unique cell biology and potential for biotechnological application. Within the phylum, bacteria of the class Phycisphaerae have been found in a multitude of environmental datasets. However, only a few species have been brought into culture so far and even enrichments are scarce. Therefore, very little is known about their lifestyle, which has hindered efforts to estimate their environmental relevance. Here, we analysed all medium- and high-quality Phycisphaerae genomes represented in the genome taxonomy database to learn more about their physiology. We combined automatic and manual annotation efforts to provide a bird's eye view of their diverse energy metabolisms. Contrasting previous reports, we did not find indications for the presence of genes for anaerobic ammonium oxidation in any Phycisphaerae genome. Instead, we found that many members of this class are adapted to a facultative anaerobic or strictly fermentative lifestyle and may be specialized in the breakdown of carbon compounds produced by other organisms. Based on these findings, we provide a practical overview of organic carbon substrates predicted to be utilized by Phycisphaerae families.
Collapse
Affiliation(s)
- Wouter B Lenferink
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Theo A van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Wang M, Zheng N, Li X, Zhao K, Xie BB. Enrichment Pretreatment Expands the Microbial Diversity Cultivated from Marine Sediments. Microorganisms 2023; 11:2771. [PMID: 38004782 PMCID: PMC10673404 DOI: 10.3390/microorganisms11112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The majority of the microbial diversity in nature has not been recovered through cultivation. Enrichment is a classical technique widely used in the selective cultivation of specific taxa. Whether enrichment is suitable for cultivation studies that aim to recover large numbers of species remains little explored. To address this issue, we evaluated the potential of enrichment pretreatment in the cultivation of bacteria from marine sediments. Upon obtaining and classifying a total of 943 pure cultures from chitin and cellulose enrichment pretreatment systems and a control system, our results showed that species obtained using enrichment pretreatment differed greatly from those without enrichment. Multiple enrichment media and different enrichment times increased the number of cultivated species in a sample. Amplicon sequencing showed that the increased relative abundance during pretreatment contributed greatly to bacterial cultivation. The testing of degradation abilities against chitin and cellulose and the whole-genome sequencing of representative strains suggested that microorganism-microorganism interactions play roles in the expanded diversity of cultivated bacteria. This study provides new insights into the abilities of enrichment in exploring cultivable diversity and mining microbial resources.
Collapse
Affiliation(s)
| | | | | | | | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (M.W.); (N.Z.); (X.L.); (K.Z.)
| |
Collapse
|
3
|
Contreras JA, Valenzuela EI, Quijano G. Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) as a technology platform for greenhouse gas abatement in wastewater treatment plants: State-of-the-art and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115671. [PMID: 35816965 DOI: 10.1016/j.jenvman.2022.115671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) is a metabolic process recently discovered and partially characterized in terms of the microorganisms and pathways involved. The N-AOM process can be a powerful tool for mitigating the impacts of greenhouse gas emissions from wastewater treatment plants by coupling the reduction of nitrate or nitrite with the oxidation of residual dissolved methane. Besides specific anaerobic methanotrophs such as bacteria members of the phylum NC10 and archaea belonging to the lineage ANME-2d, recent reports suggested that other methane-oxidizing bacteria in syntrophy with denitrifiers can also perform the N-AOM process, which facilitates the application of this metabolic process for the oxidation of residual methane under realistic scenarios. This work constitutes a state-of-art review that includes the fundamentals of the N-AOM process, new information on process microbiology, bioreactor configurations, and operating conditions for process implementation in WWTP. Potential advantages of the N-AOM process over aerobic methanotrophic biotechnologies are presented, including the potential interrelation of the N-AOM with other nitrogen removal processes within the WWTP, such as the anaerobic ammonium oxidation. This work also addressed the challenges of this biotechnology towards its application at full scale, identifying and discussing critical research niches.
Collapse
Affiliation(s)
- José A Contreras
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Edgardo I Valenzuela
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
4
|
Bellucci M, Borruso L, Piergiacomo F, Brusetti L, Beneduce L. The effect of substituting energy crop with agricultural waste on the dynamics of bacterial communities in a two-stage anaerobic digester. CHEMOSPHERE 2022; 294:133776. [PMID: 35093420 DOI: 10.1016/j.chemosphere.2022.133776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The replacement of energy crops with agricultural waste in biogas production through anaerobic digestion (AD) is both an environmentally sustainable and economically profitable strategy. However, the change of feeding mix in AD might result in nutrient imbalance or increase of the ammonium concentration, negatively affecting the activity of the microbes responsible for the process. In the present study the structure and dynamics of the bacterial communities of a full-scale two-stage AD plant, composed of a hydrolysis/acidogenesis (H) and an acetogenesis/methanogenesis (M) tanks, was monitored during feedstock substitution. Energy crop (triticale) was replaced by poultry manure litter and olive mill pomace. The increase percentage of poultry manure litter (up to 8.6%) and olive mill pomace (up to 30.5%) in the recipe incremented the total solids (up to 21% in H) and, consequently, the nitrogen content in the digestate (6.7 g N/kg in the solid fraction in H and 4-5 g NH4+-N/L in the liquid fraction). This favored the growth of Lactococcus sp. with consequent increment of lactate production (∼ 1 mg L-1 last two days of the survey) and the establishment of Weissella and Lactobacillus spp. Syntrophic acetate-oxidizers, including Syntrophaceticus (6% ± 1.7%), were detected manly in M but were negatively affected by the addition of the poultry manure litter, while the sulfate-reducing bacteria correlated with the variations of the volatile fatty acids. Planctomycetes putatively capable of anammox process were also found in the H during the first two days of the survey and accounted for 0.3 ± 0.01% of the total bacterial community. The stability of the process during feedstock change is the result of the shift of bacterial populations of different functional groups that showed peculiar adaptation patterns in the two stages of the plant.
Collapse
Affiliation(s)
- M Bellucci
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Rome, 00144, Italy
| | - L Borruso
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100, Bolzano-Bozen, Italy
| | - F Piergiacomo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100, Bolzano-Bozen, Italy
| | - L Brusetti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100, Bolzano-Bozen, Italy
| | - L Beneduce
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| |
Collapse
|
5
|
Influence of nitrate supplementation on in-vitro methane emission, milk production, ruminal fermentation, and microbial methanotrophs in dairy cows fed at two forage levels. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Modifying the chemical composition of a diet can be a good strategy for reducing methane emission in the rumen. However, this strategy can have adverse effects on the ruminal microbial flora. The aim of our study was to reduce methane without disturbing ruminal function by stimulating the growth and propagation of methanotrophs. In this study, we randomly divided twenty multiparous Holstein dairy cows into 4 groups in a 2×2 factorial design with two forage levels (40% and 60%) and two nitrate supplementation levels (3.5% and zero). We examined the effect of experimental diets on cow performance, ruminal fermentation, blood metabolites and changes of ruminal microbial flora throughout the experimental period (45-day). Additionally, in vitro methane emission was evaluated. Animals fed diet with 60% forage had greater dry matter intake (DMI) and milk fat content, but lower lactose and milk urea content compared with those fed 40% forage diet. Moreover, nitrate supplementation had no significant effect on DMI and milk yield. Furthermore, the interactions showed that nitrate reduces DMI and milk fat independently of forage levels. Our findings showed that nitrate can increase ammonia concentration, pH, nitrite, and acetate while reducing the total volatile fatty acids concentration, propionate, and butyrate in the rumen. With increasing nitrate, methane emission was considerably decreased possibly due to the stimulated growth of Fibrobacteria, Proteobacteria, type II Methanotrophs, and Methanoperedense nitroreducens, especially with high forage level. Overall, nitrate supplementation could potentially increase methane oxidizing microorganisms without adversely affecting cattle performance.
Collapse
|
6
|
Wang B, Kuang S, Shao H, Wang L, Wang H. Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112646. [PMID: 34399124 DOI: 10.1016/j.ecoenv.2021.112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the industrial emissions and accidental spills, the critical material for modern industrial society petroleum pollution causes severe ecological damage. The prosperous oil exploitation and transportation causes the recalcitrant, hazardous, and carcinogenic sludge widespread in the coastal wetlands. The costly physicochemical-based remediation remains the secondary and inadequate treatment for the derivatives along with the tailings. Anaerobic microbial petroleum degrading biotechnology has received extensive attention for its cost acceptable, eco-friendly, and fewer health hazards. As a result of the advances in biotechnology and microbiology, the anaerobic oil-degrading bacteria have been well developing to achieve the same remediation effects with lower operating costs. This review summarizes the advantages and potential scenarios of the anaerobic degrading bacteria, such as sulfate-reducing bacteria, denitrifying bacteria, and metal-reducing bacteria in the coastal area decomposing the alkanes, alkenes, aromatic hydrocarbons, polycyclic aromatic, and related derivatives. In the future, a complete theoretical basis of microbiological biotechnology, molecular biology, and electrochemistry is necessary to make efficient and environmental-friendly use of anaerobic degradation bacteria to mineralize oil sludge organic wastes.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hongbo Shao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, PR China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224002, China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
7
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|