1
|
Zhang H, Yang X, Shen C, Sun J, Lu Y, Hu W, Yao H, Zhao W. Modification of the second PEP4-allele facilitates an industrial Saccharomyces cerevisiae to tolerate tartaric acid stress. Res Microbiol 2023; 174:104109. [PMID: 37517628 DOI: 10.1016/j.resmic.2023.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The practical significance of constructing robust industrial production strains against organic acid stress lies not only in improving fermentation efficiency but also in reducing manufacturing costs. In a previous study, we constructed an industrial Saccharomyces cerevisiae strain by modifying another PEP4-allele of a mutant that already had one PEP4-allele disrupted. This modification enhanced cellular tolerance to citric acid stress during growth. Unlike citric acid, which S. cerevisiae can consume, tartaric acid is often added to grape must during winemaking to increase total acidity and is not metabolizable. The results of the present study indicate that the modification of the second PEP4-allele improves the cellular tolerance of the strain with one PEP4-allele disrupted against tartaric acid stress during growth and contributes to maintaining intracellular pH homeostasis in cells subjected to tartaric acid stress. Moreover, under tartaric acid stress, a significant improvement in glucose-ethanol conversion performance, conferred by the modification of the second PEP4-allele, was observed. This study not only broadens our understanding of the role of the PEP4-allele in cellular regulation but also provides a prospective approach to reducing the concentration of sulfur dioxide used in winemaking.
Collapse
Affiliation(s)
- Hongbo Zhang
- College of Life and Environmental Sciences, Shaoxing University, 900 Chengnandadao Road, Shaoxing 312000, People's Republic of China.
| | - Xiaomei Yang
- College of Life and Environmental Sciences, Shaoxing University, 900 Chengnandadao Road, Shaoxing 312000, People's Republic of China.
| | - Chi Shen
- College of Life and Environmental Sciences, Shaoxing University, 900 Chengnandadao Road, Shaoxing 312000, People's Republic of China.
| | - Jianqiu Sun
- College of Life and Environmental Sciences, Shaoxing University, 900 Chengnandadao Road, Shaoxing 312000, People's Republic of China.
| | - Yuhang Lu
- College of Life and Environmental Sciences, Shaoxing University, 900 Chengnandadao Road, Shaoxing 312000, People's Republic of China.
| | - Wanting Hu
- College of Life and Environmental Sciences, Shaoxing University, 900 Chengnandadao Road, Shaoxing 312000, People's Republic of China.
| | - Hongfei Yao
- College of Life and Environmental Sciences, Shaoxing University, 900 Chengnandadao Road, Shaoxing 312000, People's Republic of China.
| | - Wenhao Zhao
- College of Life and Environmental Sciences, Shaoxing University, 900 Chengnandadao Road, Shaoxing 312000, People's Republic of China.
| |
Collapse
|
2
|
Lv X, Jin K, Yi Y, Song L, Xiu X, Liu Y, Li J, Du G, Chen J, Liu L. Analysis of acid-tolerance mechanism based on membrane microdomains in Saccharomyces cerevisiae. Microb Cell Fact 2023; 22:180. [PMID: 37700284 PMCID: PMC10498586 DOI: 10.1186/s12934-023-02195-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Saccharomyces cerevisiae has been used in the biosynthesis of acid products such as organic acids owing to its acid tolerance. Improving the acid tolerance of S. cerevisiae is beneficial for expanding its application range. Our previous study isolated the TAMC strain that was tolerant to a pH 2.3 through adaptive laboratory evolution; however, its mechanism underlying tolerance to low pH environment remains unclear. RESULTS In this study, through visual observation and order analysis of plasma membrane and membrane microdomains, we revealed that the membrane microdomains of TAMC strain play an indispensable role in acid tolerance. Transcriptomic analysis showed an increase in the expression of genes related to key components of membrane microdomains in TAMC strain. Furthermore, an obvious reduction was observed in the acid tolerance of the strain with sterol C-24 methyltransferase encoding gene ERG6 knockout for inhibiting membrane microdomain formation. Finally, colocalization analysis of H+-ATPase PMA1 and plasma membrane protein PMP1 showed that disruption of membrane microdomains could inhibit the formation of the H+-ATPase complex. CONCLUSIONS Membrane microdomains could provide a platform for forming H+-ATPase complexes to facilitate intracellular H+ homeostasis, and thereby improve cell acid resistance. This study proposed a novel acid tolerance mechanism, providing a new direction for the rational engineering of acid-tolerant strains.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Ke Jin
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yu Yi
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Lingang Song
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China.
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Chen H, Zheng Y, Wang M, Wu Y, Yao M. Gene-Regulated Release of Distinctive Volatile Organic Compounds from Stressed Living Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9546-9555. [PMID: 35729728 DOI: 10.1021/acs.est.2c01774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breath-borne volatile organic compounds (VOCs) have been increasingly studied as non-invasive biomarkers in both medical diagnosis and environmental health research. Recently, changes in breath-borne VOC fingerprints were demonstrated in rats and humans following pollutant exposures. In this study, the eukaryotic model Saccharomyces cerevisiae was used to study the release of cellular VOCs resulting from toxicant exposures (i.e., O3, H2O2, and CO2) and its underlying biological mechanism. Our results showed that different toxicant exposures caused the release of distinctive VOC profiles of yeast cells. The levels of ethyl acetate and ethyl n-propionate were altered in response to all the toxicants used in this study and could thus be targeted for future environmental toxicity monitoring. The RNA-seq results revealed significant changes in the metabolic or signaling pathways related to the ribosome, carbohydrate, and amino acid metabolisms after exposures. Notably, the shift from glycolysis to the pentose phosphate pathway of carbohydrate metabolism and the inhabitation of the aspartate pathway in the lysine synthesis was essential to the cellular antioxidation by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH). The reprogrammed metabolisms could have resulted in the observed changes of VOCs released, e.g., the production of ethyl acetate for detoxification from yeast cells. This study provides further evidence that VOCs released from living organisms could be used to monitor and guard against toxic exposures while providing better mechanistic insights of the changes in breath-borne VOCs previously observed in rats and humans exposed to air toxicants.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Tian T, Cao H, Farag MA, Fan S, Liu L, Yang W, Wang Y, Zou L, Cheng KW, Wang M, Ze X, Simal-Gandara J, Yang C, Qin Z. Current and potential trends in the bioactive properties and health benefits of Prunus mume Sieb. Et Zucc: a comprehensive review for value maximization. Crit Rev Food Sci Nutr 2022; 63:7091-7107. [PMID: 35199615 DOI: 10.1080/10408398.2022.2042186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prunus mume Sieb. Et Zucc (P. mume) is an acidic fruit native to China (named Chinese Mei or greengage plum). It is currently cultivated in several Asian countries, including Japan ("Ume"), Korea (Maesil), and Vietnam (Mai or Mo). Due to its myriad nutritional and functional properties, it is accepted in different countries, and its characteristics account for its commercialization. In this review, we summarize the information on the bioactive compounds from the fruit of P. mume and their structure-activity relationships (SAR); the pulp has the highest enrichment of bioactive chemicals. The nutritional properties of P. mume and the numerous uses of its by-products make it a potential functional food. P. mume extracts exhibit antioxidant, anticancer, antimicrobial, and anti-hyperuricaemic properties, cardiovascular protective effects, and hormone regulatory properties in various in vitro and in vivo assays. SAR shows that the water solubility, molecular weight, and chemical conformation of P. mume extracts are closely related to their biological activity. However, further studies are needed to evaluate the fruit's potential nutritional and functional therapeutic mechanisms. The industrial process of large-scale production of P. mume and its extracts as functional foods or nutraceuticals needs to be further optimized.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University, Cairo, New Cairo, Egypt
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
| | - Luxuan Liu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
| | - Wenjing Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
| | - Yuxuan Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural 18 Affairs, Chengdu University, Chengdu, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xiaolei Ze
- Science and Technology Center, BY-Health Co Ltd, Guangzhou, Guangdong, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Chao Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macao University of Science and Technology, Macao, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
| |
Collapse
|
5
|
Zhu L, Xu S, Li Y, Shi G. Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering. PLoS One 2021; 16:e0258180. [PMID: 34665833 PMCID: PMC8525735 DOI: 10.1371/journal.pone.0258180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
2-Phenylethanol (2-PE) is a valuable aromatic compound with favorable flavors and good properties, resulting in its widespread application in the cosmetic, food and medical industries. In this study, a mutant strain, AD032, was first obtained by adaptive evolution under 2-PE stress. Then, a fusion protein from the Ehrlich pathway, composed of tyrB from Escherichia coli, kdcA from Lactococcus lactis and ADH2 from Saccharomyces cerevisiae, was constructed and expressed. As a result, 3.14 g/L 2-PE was achieved using L-phenylalanine as a precursor. To further increase 2-PE production, L-glutamate oxidase from Streptomyces overexpression was applied for the first time in our research to improve the supply of α-ketoglutarate in the transamination of 2-PE synthesis. Furthermore, we found that the disruption of the pyruvate decarboxylase encoding gene PDC5 caused an increase in 2-PE production, which has not yet been reported. Finally, assembly of the efficient metabolic modules and process optimization resulted in the strain RM27, which reached 4.02 g/L 2-PE production from 6.7 g/L L-phenylalanine without in situ product recovery. The strain RM27 produced 2-PE (0.8 mol/mol) with L-phenylalanine as a precursor, which was considerably high, and displayed manufacturing potential regarding food safety and process simplification aspects. This study suggests that innovative strategies regarding metabolic modularization provide improved prospects for 2-PE production in food exploitation.
Collapse
Affiliation(s)
- Linghuan Zhu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- * E-mail:
| |
Collapse
|
6
|
Liu J, Liu M, Ye P, He C, Liu Y, Zhang S, Huang J, Zhou J, Zhou R, Cai L. Characterisation of the metabolite profile and microbial community of repeated batch and coculture-fermented greengage wine. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Tian T, Sun J, Wu D, Xiao J, Lu J. Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles. Food Chem 2021; 340:128179. [PMID: 33007693 DOI: 10.1016/j.foodchem.2020.128179] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
This study is sought to identify the components in greengage wine that predict the sensory properties. Taste-active compounds and aroma-active compounds of 20 commercially available greengage wines from different regions were characterized. The relationship between these compounds, wine samples and sensory attributes was modeled by partial least squares regression. The regression analysis indicated the taste-active compounds, alanine, leucine, proline, glutamic acid, lysine, malic acid, citric acid, sucrose, glucose, gallic acid, caffeic acid and tannin made a great contribution to the characteristic taste or mouthfeel of greengage wine. Meanwhile, the aroma-active compounds, including ethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, 3-methylbutanol, 5-hydroxymethylfurfural, octanoic acid and benzaldehyde, modeled well with the flavor characteristic of greengage wine. The study revealed new insights into the relationship between chemistry and wine sensory characters, which has implications for developing an objective measurement system for determining greengage wine quality.
Collapse
Affiliation(s)
- Tiantian Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Junyong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|