1
|
Amoah OJ, Thapa SB, Ma SY, Nguyen HT, Zakaria MM, Sohng JK. Biosynthesis of Apigenin Glucosides in Engineered Corynebacterium glutamicum. J Microbiol Biotechnol 2024; 34:1154-1163. [PMID: 38563097 PMCID: PMC11180926 DOI: 10.4014/jmb.2401.01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/04/2024]
Abstract
Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and bio-fuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4'-O-β-glucoside) at 25°C, and 0.6 mM of APG2 (apigenin-7-O-β-glucoside), 1.7 mM of APG3 (apigenin-4',7-O-β-diglucoside) and 2.1 mM of APG4 (apigenin-4',5-O-β-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37°C. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.
Collapse
Affiliation(s)
- Obed Jackson Amoah
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Samir Bahadur Thapa
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Su Yeong Ma
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Morshed Md Zakaria
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan-si 31460, Republic of Korea
| |
Collapse
|
2
|
Wei SY, Gao GR, Ding MZ, Cao CY, Hou ZJ, Cheng JS, Yuan YJ. An Engineered Microbial Consortium Provides Precursors for Fengycin Production by Bacillus subtilis. JOURNAL OF NATURAL PRODUCTS 2024; 87:28-37. [PMID: 38204395 DOI: 10.1021/acs.jnatprod.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Fengycin has great potential for applications in biological control because of its biosafety and degradability. In this study, the addition of exogenous precursors increased fengycin production by Bacillus subtilis. Corynebacterium glutamicum was engineered to produce high levels of precursors (Thr, Pro, Val, and Ile) to promote the biosynthesis of fengycin. Furthermore, recombinant C. glutamicum and Yarrowia lipolytica providing amino acid and fatty acid precursors were co-cultured to improve fengycin production by B. subtilis in a three-strain artificial consortium, in which fengycin production was 2100 mg·L-1. In addition, fengycin production by the consortium in a 5 L bioreactor reached 3290 mg·L-1. Fengycin had a significant antifungal effect on Rhizoctonia solani, which illustrates its potential as a food preservative. Taken together, this work provides a new strategy for improving fengycin production by a microbial consortium and metabolic engineering.
Collapse
Affiliation(s)
- Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| |
Collapse
|
3
|
Hanh DD, Elkasaby T, Kawaguchi H, Tsuge Y, Ogino C, Kondo A. Enhanced production of itaconic acid from enzymatic hydrolysate of lignocellulosic biomass by recombinant Corynebacteriumglutamicum. J Biosci Bioeng 2023:S1389-1723(23)00083-X. [PMID: 37120372 DOI: 10.1016/j.jbiosc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/01/2023]
Abstract
Itaconic acid (IA) is a value-added chemical currently produced by Aspergillus terreus from edible glucose and starch but not from inedible lignocellulosic biomass owing to the high sensitivity to fermentation inhibitors present in the hydrolysate of lignocellulosic biomass. To produce IA from lignocellulosic biomass, a gram-positive bacterium, Corynebacterium glutamicum, with a high tolerance to fermentation inhibitors was metabolically engineered to express a fusion protein composed of cis-aconitate decarboxylase from A. terreus responsible for IA formation from cis-aconitate and a maltose-binding protein (malE) from Escherichia coli. The codon-optimized cadA_malE gene was expressed in C. glutamicum ATCC 13032, and the resulting recombinant strain produced IA from glucose. IA concentration increased 4.7-fold by the deletion of the ldh gene encoding lactate dehydrogenase. With the Δldh strain HKC2029, an 18-fold higher IA production was observed from enzymatic hydrolysate of kraft pulp as a model lignocellulosic biomass than from glucose (6.15 and 0.34 g/L, respectively). The enzymatic hydrolysate of kraft pulp contained various potential fermentation inhibitors involved in furan aldehydes, benzaldehydes, benzoic acids, cinnamic acid derivatives, and aliphatic acid. Whereas cinnamic acid derivatives severely inhibited IA production, furan aldehydes, benzoic acids, and aliphatic acid improved IA production at low concentrations. The present study suggests that lignocellulosic hydrolysate contains various potential fermentation inhibitors; however, some of them can serve as enhancers for microbial fermentation likely due to the changing of redox balance in the cell.
Collapse
Affiliation(s)
- Dao Duy Hanh
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Taghreed Elkasaby
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Botany Department, Faculty of Science, Mansoura University, 60 Elgomhoria St, Mansoura 35516, Egypt
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yota Tsuge
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|