1
|
Talluri SNL, Rittschof D, Winter RM, Salem DR. Cyanobacteria fouling in photobioreactors: current status and future perspectives for prevention. BIOFOULING 2025:1-27. [PMID: 40337854 DOI: 10.1080/08927014.2025.2499107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025]
Abstract
Cyanobacteria biomass sources have the potential to contribute to the replacement of fossil fuels and to the reduction in global warming by sustainable conversion of atmospheric CO2 into biofuels and high-value chemicals. Cyanobacteria cultivation in photobioreactors (PBRs) results in biofouling on their transparent inner walls, which reduces photosynthetic efficiency and productivity. While cyanobacteria biofouling in PBRs is recognized as a significant operating challenge, this review draws attention to the lack of studies on antifouling strategies for PBRs involving cyanobacteria and discusses several areas related to cyanobacteria fouling mechanisms on PBR materials, which require further investigation. These include an in-depth analysis of conditioning films, the role of pili and EPS in gliding and adhesion, potential revisions to existing theoretical models for predicting adhesion, and material properties that affect cyanobacteria adhesion. We use knowledge from marine, medical, and industrial biofouling management to help identify strategies to combat cyanobacteria fouling in PBRs, and we review the applicability of various bioinspired physical and chemical strategies, as well as genetic engineering approaches to prevent cyanobacteria biofilm formation in PBRs.
Collapse
Affiliation(s)
- Suvarna N L Talluri
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center (CNAM-Bio), South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Daniel Rittschof
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, Duke University, Beaufort, North Carolina, USA
| | - Robb M Winter
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center (CNAM-Bio), South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
2
|
Saleem S, Sheikh Z, Iftikhar R, Zafar MI. Eco-friendly cultivation of microalgae using a horizontal twin layer system for treatment of real solid waste leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119847. [PMID: 38142597 DOI: 10.1016/j.jenvman.2023.119847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Solid waste leachate (SWL) requires dilution with water to offset the negative effects of high nutrient concentration and organic compounds for its microalgae-based treatment. Among attached cultivation systems, twin layer is a technology in which limited information is available on treatment of high strength wastewater using microalgae. Moreover, widespread application of twin layer technology is limited due to cost of substrate and source layer used. In the present study, potential of Scenedesmus sp. for the treatment of SWL was assessed on horizontal twin layer system (HTLS). Novel and cost-effective substrate layers were tested as attachment material. Wetland treated municipal wastewater (WMW) was used to prepare SWL dilutions viz, 5%, 10%, 15%, 20% and 25% SWL. Recycled printing paper showed maximum biomass productivity of 5.19 g m-2 d-1. Among all the SWL dilutions, Scenedesmus sp. achieved maximum growth of 103.05 g m-2 in 5% SWL which was 16% higher than WMW alone. The maximum removal rate of NH4+ -N, TKN, and PO43- P was obtained in 20% SWL which was 1371, 1588 and 153 mg m-2 d-1 respectively. Varying concentrations of nutrients in different SWL dilutions significantly affected lipid biosynthesis, with enhanced productivity of 2.28 g m-2 d-1 achieved in 5% SWL compared to 0.97 g m-2 d-1 in 20% SWL. Hence, it can be concluded that 5% SWL dilution was good for biomass and lipid production, while the highest nutrient removal rates were obtained at 20% SWL mainly attributed to biotic and abiotic processes. Based on these results HTLS can be a promising technology for pilot scale to explore industrialized application of wastewater treatment and algal production.
Collapse
Affiliation(s)
- Sahar Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Zeshan Sheikh
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Rashid Iftikhar
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Ke L, Yang R, Liu Q, Mao Y, Chen J, Luo Q, Chen H. Oligoagars and microbial agents show potential for Porphyra disease prevention. AMB Express 2023; 13:128. [PMID: 37975935 PMCID: PMC10656394 DOI: 10.1186/s13568-023-01635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
Disease is a major concern in Porphyra aquaculture, particularly during the early shell-borne conchocelis (SBC) seedling stage. To explore prevention strategies for Porphyra diseases, this study explored the potential of using oligoagars (OA) and microbial agents (MA) to treat SBC of Neoporphyra haitanensis in an aquaculture environment. The impact of these treatments on the phycosphere microbial community was analyzed, and the resistance of the treated Porphyra conchocelis to the pathogenic bacterium Vibrio mediterranei 117-T6 (which causes yellow spot disease) was tested in the lab. Results showed that OA reduced α-diversity while enriching Rhodobacteriaceae, and MA increased stability and relative abundance of Bacteroidetes (including Flavobacteria). Furthermore, compared to the control group, the abundance of pathogenic microorganisms and virulence functional genes decreased while defense-related functional gene abundance increased significantly in the groups treated with OA and MA. Most importantly, the OA and MA treatments improved resistance to Vm117-T6, with survival rates of 70% (OA) and 80% (MA), compared to 15% in the control group. Overall, the findings suggest that OA and MA treatments have great potential for preventing Porphyra disease, as they improve phycosphere microorganisms and increase algae resistance to pathogenic bacteria.
Collapse
Affiliation(s)
- Lei Ke
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Marine Science, Ningbo University, No. 169, Qixing South Road, Meishan Bonded Port Area, Ningbo, 315800, Zhejiang, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China.
- School of Marine Science, Ningbo University, No. 169, Qixing South Road, Meishan Bonded Port Area, Ningbo, 315800, Zhejiang, China.
| | - Qiqin Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Marine Science, Ningbo University, No. 169, Qixing South Road, Meishan Bonded Port Area, Ningbo, 315800, Zhejiang, China
| | - Yangying Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Marine Science, Ningbo University, No. 169, Qixing South Road, Meishan Bonded Port Area, Ningbo, 315800, Zhejiang, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Marine Science, Ningbo University, No. 169, Qixing South Road, Meishan Bonded Port Area, Ningbo, 315800, Zhejiang, China
| | - Qijun Luo
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Marine Science, Ningbo University, No. 169, Qixing South Road, Meishan Bonded Port Area, Ningbo, 315800, Zhejiang, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Marine Science, Ningbo University, No. 169, Qixing South Road, Meishan Bonded Port Area, Ningbo, 315800, Zhejiang, China
| |
Collapse
|
4
|
Mousavian Z, Safavi M, Salehirad A, Azizmohseni F, Hadizadeh M, Mirdamadi S. Improving biomass and carbohydrate production of microalgae in the rotating cultivation system on natural carriers. AMB Express 2023; 13:39. [PMID: 37119344 PMCID: PMC10148935 DOI: 10.1186/s13568-023-01548-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/01/2023] Open
Abstract
Biofilm-based algal technologies have gained popularity due to higher biomass productivity, efficient harvesting, and water-saving over suspended growth systems. A rotating attached system was designed to assess the biofilm-forming capacity of different isolated microalgal strains from the Persian Gulf. Four microalgal strains, including two Chlorella sp., one Picochlorum sp. and one filamentous cyanobacterium Desmonostoc sp. were cultivated on four carriers: jute, cotton, yarn and nylon. The carriers' physicochemical surface characteristics and attachment effects, like contact angle, were investigated. The incorporated biomass and exopolysaccharides (EPS) content in the suspended and biofilm system was calculated and compared. The results showed that the cyanobacterium strain had the biofilm formation capability on both jute and cotton in the attached cultivation system. Under the same culture conditions, the biomass productivity on jute and cotton carriers was significantly higher (4.76 and 3.61 g m- 2 respectively) than the growth in aqueous suspension (1.19 g m- 2 d- 1). The greatest incorporated exopolysaccharides amount was observed on jute (43.62 ± 4.47%) and the lowest amount was obtained from the growth on positive charge yarn (18.62 ± 1.88%). This study showed that in comparison with planktonic growth, the colonization of cyanobacterial cells and subsequent production of extracellular matrix and biofilm formation can lead to increased biomass production.
Collapse
Affiliation(s)
- Zahra Mousavian
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
- Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Parsa Sq., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 3353-5111, Tehran, 3353136846, Iran.
| | - Alireza Salehirad
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| | - Farzaneh Azizmohseni
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| | - Mahnaz Hadizadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
- Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Parsa Sq., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 3353-5111, Tehran, 3353136846, Iran.
| |
Collapse
|
5
|
Wang Y, Li L, Zhao D, Zhou W, Chen L, Su G, Zhang Z, Liu T. Surface patterns of mortar plates influence Spirulina platensis biofilm attached cultivation: Experiment and modeling. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Ji C, Wang H, Cui H, Zhang C, Li R, Liu T. Characterization and evaluation of substratum material selection for microalgal biofilm cultivation. Appl Microbiol Biotechnol 2023; 107:2707-2721. [PMID: 36922440 DOI: 10.1007/s00253-023-12475-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Biofilm cultivation is considered a promising method to achieve higher microalgae biomass productivity with less water consumption and easier harvest compared to conventional suspended cultivation. However, studies focusing on the selection of substratum material and optimization of the growth of certain microalgae species on specific substratum are limited. This study investigated the selection of membranous and fabric fiber substrata for the attachment of unicellular microalgae Scenedesmus dimorphus and filamentous microalgae Tribonema minus in biofilm cultivation. The results indicated that both algal species preferred hydrophilic membranous substrata and nitrate cellulose/cellulose acetate membrane (CN-CA) was selected as a suitable candidate on which the obtained biomass yields were up to 10.24 and 7.81 g m-2 day-1 for S. dimorphus and T. minus, respectively. Furthermore, high-thread cotton fiber (HCF) and low-thread polyester fiber (LPEF) were verified as the potential fabric fiber substrata for S. dimorphus (5.42 g m-2 day-1) and T. minus (5.49 g m-2 day-1) attachment, respectively. The regrowth of microalgae biofilm cultivation strategy was applied to optimize the algae growth on the fabric fiber substrata, with higher biomass density and shear resistibility achieved for both algal species. The present data highlight the importance to establish the standards for selection the suitable substratum materials in ensuring the high efficiency and sustainability of the attached microalgal biomass production. KEY POINTS: • CN-CA was suitable membranous substratum candidate for algal biofilm cultivation. • HCF and LPEF were potential fabric fiber substrata for S. dimorphus and T. minus. • Regrowth biofilm cultivation was effective in improving algal biomass and attachment.
Collapse
Affiliation(s)
- Chunli Ji
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hui Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| | - Hongli Cui
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunhui Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
| |
Collapse
|
7
|
Singh G, Patidar S. Water quality improvement using novel attached growth systems. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2172584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gulab Singh
- Department of Civil Engineering, National Institute of Technology, Kurukshetra, Haryana, India
| | | |
Collapse
|
8
|
Sharp turns and gyrotaxis modulate surface accumulation of microorganisms. Proc Natl Acad Sci U S A 2022; 119:e2206738119. [PMID: 36219692 PMCID: PMC9586295 DOI: 10.1073/pnas.2206738119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Populations of swimming microorganisms are ubiquitous in aqueous environments from blood vessels to oceans and from biofilms to biotechnological industries, where they routinely encounter solid boundaries. This paper explores experimentally how the presence of boundaries influences the behavior of a marine alga (Heterosigma akashiwo), whose normal trajectories exhibit both random sharp turns and gravitational reorientation (gyrotaxis). Proximity to a plane boundary strongly increases the probability of sharp turns and thereby influences the distributions of swimming speed, angular velocity and, unexpectedly, rotational diffusivity as functions of distance from the boundary and of swimming orientation. These variations all contribute to enhancing accumulation beneath an upper boundary much more than gyrotaxis alone. The accumulation of swimming microorganisms at surfaces is an essential feature of various physical, chemical, and biological processes in confined spaces. To date, this accumulation is mainly assumed to depend on the change of swimming speed and angular velocity caused by cell-wall contact and hydrodynamic interaction. Here, we measured the swimming trajectories of Heterosigma akashiwo (a biflagellate marine alga) near vertical and horizontal rigid boundaries. We observed that the probability of sharp turns is greatly increased near a vertical wall, resulting in significant changes in the distributions of average swimming speed, angular velocity, and rotational diffusivity near the wall (a quantity that has not previously been investigated) as functions of both distance from the wall and swimming orientation. These cannot be satisfactorily explained by standard hydrodynamic models. Detailed examination of an individual cell trajectory shows that wall contact by the leading flagellum triggers complex changes in the behavior of both flagella that cannot be incorporated in a mechanistic model. Our individual-based model for predicting cell concentration using the measured distributions of swimming speed, angular velocity, and rotational diffusivity agrees well with the experiment. The experiments and model are repeated for a cell suspension in a vertical plane, bounded above by a horizontal wall. The cell accumulation beneath the wall, expected from gyrotaxis, is considerably amplified by cell-wall interaction. These findings may shed light on the prediction and control of cell distribution mediated by gyrotaxis and cell-wall contact.
Collapse
|
9
|
Izmailov AY, Lobachevsky YP, Dorokhov AS, Kozhevnikov YA, Mamedova RA. Experimental modeling of the microalgae cultivation in a photobioreactor using manure. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article studies the experimental process of cultivation of microalgae in a photobioreactor (PBR) to study the effect of technological conditions on the productivity of microalgae. This process allows obtaining initial data for the development of closed cycles of using the energy potential of alga mass in heat and power supply of various industries, including agricultural enterprises (livestock complexes, poultry farms, etc.) The scheme of a closed cycle of power supply of the cattle complex allows obtaining hot water, feed additives to the cattle ration, bio humus, motor biofuel and carbon dioxide, which is advisable to use in the process of cultivating microalgae. The experiments were carried out on a photobioreactor for cultivating microalgae with an intelligent control system. The developed photobioreactor differs from the known ones in the pulsating hydrodynamic regime of feeding the nutrient solution, which provides an increase in the productivity of the microalgae cultivation up to 15%. The experimental model of the cultivation conditions of the microalga Ch. Vulgaris on a combined diet (Tamiya medium + manure substrate) showed a noticeable increase in crop productivity when adding cattle manure extract to the nutrient medium in an amount from 30 to 60% (vol.). This can be used in the development of closed cycles of heat and power supply for cattle farms based on biofuels of the third generation, obtained from the phytomass of microalgae.
Collapse
|