1
|
Zhang YX, Gao JY, Wang MM, Qi WD, Chen QY, Wang YH, Cai WF, Guo K. Enrichment of nitrogen-fixing hydrogen-oxidizing bacteria community for efficient microbial protein production in airlift reactor. BIORESOURCE TECHNOLOGY 2025; 428:132443. [PMID: 40139468 DOI: 10.1016/j.biortech.2025.132443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Autotrophic nitrogen-fixing hydrogen-oxidizing bacteria (NF-HOB) have the capability to directly utilize carbon dioxide and dinitrogen for the sustainable production of microbial protein (MP), offering a promising alternative for food and feed applications. However, the low production rate of MP remains a major bottleneck for the practical implementation of NF-HOB. This study enriched a highly active and stable NF-HOB functional community for enhanced MP production. Utilizing an airlift reactor and implementing a two-stage gas supply strategy achieved a maximum cell dry weight (CDW) of 4.8 g/L and a biomass yield of 0.25 g CDW/L/day, surpassing previously reported values. The produced MP exhibited an essential amino acid profile superior to soybean meal and comparable to fish meal, with a notable accumulation of branched-chain amino acids (BCAAs). These findings provide new insights into NF-HOB enrichment strategies and further highlight their potential as a sustainable platform for MP production.
Collapse
Affiliation(s)
- Yu-Xiao Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jia-Yao Gao
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng-Meng Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei-Dong Qi
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing-Yun Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yun-Hai Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wen-Fang Cai
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kun Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Wang H, Zhang L, Tian C, Fan S, Zheng D, Song Y, Gao P, Li D. Effects of nitrogen supply on hydrogen-oxidizing bacterial enrichment to produce microbial protein: Comparing nitrogen fixation and ammonium assimilation. BIORESOURCE TECHNOLOGY 2024; 394:130199. [PMID: 38092074 DOI: 10.1016/j.biortech.2023.130199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
To investigate the effects of nitrogen source supply on microbial protein (MP) production by hydrogen-oxidizing bacteria (HOB) under continuous feed gas provision, a sequencing batch culture comparison (N2 fixation versus ammonium assimilation) was performed. The results confirmed that even under basic cultivation conditions, N2-fixing HOB (NF-HOB) communities showed higher levels of CO2 and N2 fixation (190.45 mg/L Δ CODt and 11.75 mg/L Δ TNbiomass) than previously known, with the highest biomass yield being 0.153 g CDW/g COD-H2. Rich ammonium stimulated MP synthesis and the biomass accumulation of communities (increased by 7.4 ~ 14.3 times), presumably through the enhancement of H2 and CO2 absorption. The micro mechanism may involve encouraging the enrichment of species like Xanthobacter and Acinetobacter then raising the abundance of nitrogenase and glutamate synthase to facilitate the nitrogen assimilation. This would provide NF-HOB with ideas for optimizing their MP synthesis activity.
Collapse
Affiliation(s)
- Haoran Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Fan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Song
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Yadav A, Boruah JLH, Geed SR, Sharma RK, Saikia R. Occurrence, identification and characterization of diazotrophic bacteria from aerial roots of Rhynchostylis retusa (L.) Blume for plant growth-promoting activity. Arch Microbiol 2023; 205:131. [PMID: 36947279 DOI: 10.1007/s00203-023-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
In this study, the diversity of diazotrophic bacteria of orchid Rhynchostylis retusa (L.) Blume and its potential application in plant growth promotion were evaluated. About 183 nitrogen-fixing bacteria were isolated to screen various plant growth-promoting traits viz. phosphate solubilization,IAA, siderophore, HCN, biofilm and ammonia production. Based on 16S rRNA gene sequencing analysis Achromobacter, Arthrobacter, Acinetobacter, Bacillus, Brevibacterium, Curtobacterium, Erwinia, Kosakonia, Lysinibacillus, Klebseilla, Microbacterium, Mixta, Pantoea, Pseudomonas and Stenotrophomonas isolates were selected and showed positive results for PGP traits. Overall, genus Pantoea, Brevibacterium, Achromobacter, Arthrobacter, Klebsiella, Mixta, Bacillus, and Pseudomonas had the most pronounced PGP characteristics and acetylene reduction among the screened isolates. BOX PCR fingerprinting analysis showed variation in polymorphic banding patterns among diazotrophic strains. PCR amplification of nifH gene and the presence of 37 kDa nitrogenase reductase enzyme band in western blot indicated presence of nitrogenase activity. Our study showed that orchid R. retusa diazotroph interaction helps orchid plant to fix nitrogen, essential nutrients, and control pathogen entry. To the best of our knowledge, this is the first report on characterization of diazotrophic bacterial community from aerial roots of R. retusa.
Collapse
Affiliation(s)
- Archana Yadav
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.
- Department of Applied Biology, University of Science and Technology, Baridua, Meghalaya, India.
| | - Jyoti Lakshmi Hati Boruah
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Sachin Rameshrao Geed
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Rabin K Sharma
- Department of Applied Biology, University of Science and Technology, Baridua, Meghalaya, India
| | - Ratul Saikia
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
4
|
Wang M, Shang Y, Liu X, Chen S. Assembly of nitrogenase biosynthetic pathway in Saccharomyces cerevisiae by using polyprotein strategy. Front Microbiol 2023; 14:1137355. [PMID: 36937264 PMCID: PMC10017450 DOI: 10.3389/fmicb.2023.1137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Nitrogenase in some bacteria and archaea catalyzes conversion of N2 to ammonia. To reconstitute a nitrogenase biosynthetic pathway in a eukaryotic host is still a challenge, since synthesis of nitrogenase requires a large number of nif (nitrogen fixation) genes. Viral 2A peptide mediated "cleavage" of polyprotein is one of strategies for multigene co-expression. Here, we show that cleavage efficiency of NifB-2A-NifH polyprotein linked by four different 2A peptides (P2A, T2A, E2A, and F2A) in Saccharomyces cerevisiae ranges from ~50% to ~90%. The presence of a 2A tail in NifB, NifH, and NifD does not affect their activity. Western blotting shows that 9 Nif proteins (NifB, NifH, NifD, NifK, NifE, NifN, NifX, HesA, and NifV) from Paenibacillus polymyxa that are fused into two polyproteins via 2A peptides are co-expressed in S. cerevisiae. Expressed NifH from Klebsiella oxytoca NifU and NifS and P. polymyxa NifH fusion linked via 2A in S. cerevisiae exhibits Fe protein activity.
Collapse
|
5
|
Li Q, Zhang H, Zhang L, Chen S. Functional analysis of multiple nifB genes of Paenibacillus strains in synthesis of Mo-, Fe- and V-nitrogenases. Microb Cell Fact 2021; 20:139. [PMID: 34281551 PMCID: PMC8287671 DOI: 10.1186/s12934-021-01629-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
Background Biological nitrogen fixation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known. Results A total of 138 nifB genes are found in the 116 diazotrophic Paenibacillus strains. Phylogeny analysis shows that these nifB genes fall into 4 classes: nifBI class including the genes (named as nifB1 genes) that are the first gene within the compact nif gene cluster, nifBII class including the genes (named as nifB2 genes) that are adjacent to anf or vnf genes, nifBIII class whose members are designated as nifB3 genes and nifBIV class whose members are named as nifB4 genes are scattered on genomes. Functional analysis by complementation of the ∆nifB mutant of P. polymyxa which has only one nifB gene has shown that both nifB1 and nifB2 are active in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Deletion analysis also has revealed that nifB1 of Paenibacillus sabinae T27 is involved in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Complementation of the P. polymyxa ∆nifBHDK mutant with the four reconstituted operons: nifB1anfHDGK, nifB2anfHDGK, nifB1vnfHDGK and nifB2vnfHDGK, has shown both that nifB1 and nifB2 were able to support synthesis of Fe- or V-nitrogenases. Transcriptional results obtained in the original Paenibacillus strains are consistent with the complementation results. Conclusions The multiple nifB genes of the diazotrophic Paenibacillus strains are divided into 4 classes. The nifB1 located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV) and the nifB2 genes being adjacent to nif or anf or vnf genes are active in synthesis of Mo-, Fe and V-nitrogenases, but nifB3 and nifB4 are not. The reconstituted anf system comprising 8 genes (nifBanfHDGK and nifXhesAnifV) and vnf system comprising 10 genes (nifBvnfHDGKEN and nifXhesAnifV) support synthesis of Fe-nitrogenase and V-nitrogenase in Paenibacillus background, respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01629-9.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.,Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, and College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, and College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|