1
|
An X, Li N, Zhang L, Xu Z, Zhang S, Zhang Q. New insights into the typical nitrogen-containing heterocyclic compound-quinoline degradation and detoxification by microbial consortium: Integrated pathways, meta-transcriptomic analysis and toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133158. [PMID: 38061124 DOI: 10.1016/j.jhazmat.2023.133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024]
Abstract
As the primary source of COD in industrial wastewater, quinoline has aroused increasing attention because of its potential teratogenic, carcinogenic, and mutagenic effects in the environment. The activated sludge isolate quinoline-degrading microbial consortium (QDMC) efficiently metabolizes quinoline. However, the molecular underpinnings of the degradation mechanism of quinoline by QDMC have not been elucidated. High-throughput sequencing revealed that the dominant genera included Diaphorobacter, Bacteroidia, Moheibacter and Comamonas. Furthermore, a positive strong correlation was observed between the key bacterial communities (Diaphorobact and Bacteroidia) and quinoline degradation. According to metatranscriptomics, genes associated with quorum sensing, ABC transporters, component systems, carbohydrate, aromatic compound degradation, energy metabolism and amino metabolism showed high expression, thus improving adaptability of microbial community to quinoline stress. In addition, the mechanism of QDMC in adapting and resisting to extreme environmental conditions in line with the corresponding internal functional properties and promoting biogegradation efficiency was illustrated. Based on the identified products, QDMC effectively mineralized quinoline into low-toxicity metabolites through three major metabolic pathways, including hydroxyquinoline, 1,2,3,4-H-quinoline, 5,6,7,8-tetrahydroquinoline and 1-oxoquinoline pathways. Finally, toxicological, genotoxicity and phytotoxicity studies supported the detoxification of quinoline by the QDMC. This study provided a promising approach for the stable, environmental-friendly and efficient bioremediation applications for quinoline-containing wastewater.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ningjian Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lizhen Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Wang HD, Xu JZ, Zhang WG. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli. Appl Microbiol Biotechnol 2023; 107:3593-3603. [PMID: 37097502 DOI: 10.1007/s00253-023-12532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
L-arginine (L-Arg) is a semi-essential amino acid with many important physiological functions. However, achieving efficient manufacture of L-Arg on an industrial scale using Escherichia coli (E. coli) remains a major challenge. In previous studies, we constructed a strain of E. coli A7, which had good L-Arg production capacity. In this study, E. coli A7 was further modified, and E. coli A21 with more efficient L-Arg production capacity was obtained. Firstly, we reduced the acetate accumulation of strain A7 by weakening the poxB gene and overexpressing acs gene. Secondly, we improved the L-Arg transport efficiency of strains by overexpressing the lysE gene from Corynebacterium glutamicum (C. glutamicum). Finally, we enhanced the supplies of precursors for the synthesis of L-Arg and optimized the supplies of cofactor NADPH and energy ATP in strain. After fermentation in a 5-L bioreactor, the L-Arg titer of strain A21 was found to be 89.7 g/L. The productivity was 1.495 g/(L·h) and the glucose yield was 0.377 g/g. Our study further narrowed the titer gap between E. coli and C. glutamicum in the synthesis of L-Arg. In all recent studies on the L-Arg production by E. coli, this was the highest titer recorded. In conclusion, our study further promotes the efficient mass synthesis of L-Arg by E. coli. KEY POINTS: • The acetate accumulation of starting strain A7 was decreased. • Overexpression of gene lysE of C. glutamicum enhanced L-Arg transport in strain A10. • Enhance the supplies of precursors for the synthesis of L-Arg and optimize the supplies of cofactor NADPH and energy ATP. Finally, Strain A21 was detected to have an L-Arg titer of 89.7 g/L in a 5-L bioreactor.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
3
|
Zhao Z, Cai M, Liu Y, Hu M, Yang F, Zhu R, Xu M, Rao Z. Genomics and transcriptomics-guided metabolic engineering Corynebacterium glutamicum for l-arginine production. BIORESOURCE TECHNOLOGY 2022; 364:128054. [PMID: 36184013 DOI: 10.1016/j.biortech.2022.128054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
l-arginine is a semi-essential amino acid that is broadly used as food additives and pharmaceutical intermediates. The synthesis of l-arginine is restricted by complex metabolic mechanisms and suboptimal fermentation conditions. Initially, a mutant strain that accumulated 19.4 g/L l-arginine was generated by random mutagenesis. Subsequently, a mutation of the repressor protein (argRG159D) in the l-arginine operon and glutamate synthase (gltD) with 532-fold upregulation were identified to be vital for l-arginine production by multi-omic analysis. Systematic metabolic engineering was used to modify the strain, which included interfering with α-ketoglutarate dehydrogenase complex (ODHC) activity by knocking out serine/threonine-protein kinase (pknG), enhancing the expression of multiple key enzymes in the l-arginine synthesis pathway, and increasing the availability of intracellular cofactor (NADPH) and energy (ATP). Finally, C. glutamicum ARG12 produced 71.3 g/L l-arginine, with a yield of 0.43 g/g glucose by fermentation optimization. This study provides new ideas to boost l-arginine production.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yunran Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengkai Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fengyu Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Rongshuai Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
He H, Li Y, Zhang L, Ding Z, Shi G. Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective. J Adv Res 2022:S2090-1232(22)00205-3. [PMID: 36103961 DOI: 10.1016/j.jare.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Nitrogen sources play an essential role in maintaining the physiological and biochemical activity of bacteria. Nitrogen metabolism, which is the core of microorganism metabolism, makes bacteria able to autonomously respond to different external nitrogen environments by exercising complex internal regulatory networks to help them stay in an ideal state. Although various studies have been put forth to better understand this regulation in Bacillus, and many valuable viewpoints have been obtained, these views need to be presented systematically and their possible applications need to be specified. AIM OF REVIEW The intention is to provide a deep and comprehensive understanding of nitrogen metabolism in Bacillus, an important industrial microorganism, and thereby apply this regulatory logic to synthetic biology to improve biosynthesis competitiveness. In addition, the potential researches in the future are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Understanding the meticulous regulation process of nitrogen metabolism in Bacillus not only could facilitate research on metabolic engineering but also could provide constructive insights and inspiration for studies of other microorganisms.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
5
|
Hai-De W, Shuai L, Bing-Bing W, Jie L, Jian-Zhong X, Wei-Guo Z. Metabolic engineering of Escherichia coli for efficient production of l-arginine. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:127-150. [PMID: 37085192 DOI: 10.1016/bs.aambs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a semi-essential amino acid, l-arginine (l-Arg) plays an important role in food, health care, and medical treatment. At present, the main method of producing l-Arg is the use of microbial fermentation. Therefore, the selection and breeding of high-efficiency microbial strains is the top priority. To continuously improve the l-Arg production performance of the strains, a series of metabolic engineering strategies have been tried to transform the strains. The production of l-Arg by metabolically engineered Corynebacterium glutamicum (C. glutamicum) reached a relatively high level. Escherichia coli (E. coli), as a strain with great potential for l-Arg production, also has a large number of research strategies aimed at screening effective E. coli for producing l-Arg. E. coli also has a number of advantages over C. glutamicum in producing l-Arg. Therefore, it is of great significance to screen out excellent and stable E. coli to produce l-Arg. Here, based on recent research results, we review the metabolic pathways of l-Arg production in E. coli, the research progress of l-Arg production in E. coli, and various regulatory strategies implemented in E. coli.
Collapse
|