1
|
Caldeira JB, Correia AA, Branco R, Morais PV. The effect of biopolymer stabilisation on biostimulated or bioaugmented mine residue for potential technosol production. Sci Rep 2024; 14:25583. [PMID: 39462015 PMCID: PMC11513976 DOI: 10.1038/s41598-024-75840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Mine waste can be transformed into technosol as an ecological strategy. Despite its importance to soil functions, biological activity is often overlooked. Biopolymers can serve as innovative tools for bioremediation, facilitating chemical reactions and creating networks to encapsulate contaminants. This work aims to assess the use of bioleached and stabilised residues from a tungsten mine for technosol production. The first objective was to evaluate mine tailings for their bioleaching potential by biostimulation or bioaugmentation with strain Diaphorobacter polyhydroxybutyrativorans B2A2W2. The second was to evaluate the effect of Portland cement or biopolymers such as Carboxymethyl Cellulose (CMC) or Xanthan Gum (XG) on the stabilisation of bioleached residues. The impact of biopolymers on residues' characteristics, such as metal leaching, number of cultivable microorganisms, compression strength and ecotoxicity was evaluated using flow systems. Over time, bioleached metallic elements decreased, except for iron (Fe). Biostimulated and stabilised residues exhibited similar trends; both CMC and cement showed low leaching rates and viable microorganisms in the same order (106 CFU × ml-1). However, bioaugmented residue stabilised with XG showed 106 CFU × ml-1 viable microorganisms and increased 2.2-fold Fe leaching than BA_Control. CMC addition to bioaugmented residue reduced 5.9-fold Fe leaching and increased 100-fold viable microorganisms. By utilising both biological and engineering approaches to characterise the technosol, this study contributes to advancing knowledge of technosol production. The residues biostimulated and stabilised with CMC produced a material useful for bio-applications, with low toxicity and metal leaching, useful for bio-applications. XG was the best stabiliser for geotechnical engineering applications, with improved compression strength. In conclusion, the study demonstrates the usefulness of biopolymer treatment for residues and emphasises the importance of selecting the appropriate biopolymer for the intended function of technosols.
Collapse
Affiliation(s)
- Joana B Caldeira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| | - António A Correia
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Civil Engineering, Universidade de Coimbra, R. Luís Reis Santos, 3030-788, Coimbra, Portugal
| | - Rita Branco
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| | - Paula V Morais
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
2
|
Coimbra C, Morais PV, Branco R. Iron homeostasis as a cell detoxification mechanism in Mesorhizobium qingshengii J19 under yttrium exposure. Front Microbiol 2024; 15:1467386. [PMID: 39430103 PMCID: PMC11486727 DOI: 10.3389/fmicb.2024.1467386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Yttrium (Y), an important rare earth element (REE), is increasingly prevalent in the environment due to industrial activities, raising concerns about its toxicity. Understanding the effects of Y on microorganisms is essential for bioremediation and biorecovery processes. This study investigates how Mesorhizobium qingshengii J19, a strain with notable resistance to Y, manages iron homeostasis as a detoxifying mechanism under Y stress. Using comparative genomic and transcriptomic analyses, we explored the gene expression profile of strain J19 to identify the mechanisms underlying its high Y resistance and effective Y removal from the medium. Genome-wide transcriptional profiling revealed 127 significantly differentially expressed genes out of 6,343 under Y stress, with 36.2 % up-regulated and 63.8 % down-regulated. Notably, Y exposure significantly affects cellular iron homeostasis and activates arsenic detoxifying mechanisms. A key finding was the 7.6-fold up-regulation of a TonB transporter gene, indicating its crucial role in Y detoxification. Real-time PCR (RT-PCR) analysis of the selected gene confirmed the accuracy of RNA sequencing results. Further validation showed that iron supplementation mitigates Y-induced growth inhibition, leading to reduced ROS production in strain J19. This study elucidates the molecular mechanisms by which strain M. qingshengii J19 adapts to Y stress, emphasizing the importance of iron in controlling ROS and protecting against Y toxicity. It also highlights critical pathways and adaptive responses involved in the strain's resilience to metal stress.
Collapse
Affiliation(s)
| | - Paula V. Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, Coimbra, Portugal
| | | |
Collapse
|
3
|
Chen M, Trotter VV, Walian PJ, Chen Y, Lopez R, Lui LM, Nielsen TN, Malana RG, Thorgersen MP, Hendrickson AJ, Carion H, Deutschbauer AM, Petzold CJ, Smith HJ, Arkin AP, Adams MWW, Fields MW, Chakraborty R. Molecular mechanisms and environmental adaptations of flagellar loss and biofilm growth of Rhodanobacter under environmental stress. THE ISME JOURNAL 2024; 18:wrae151. [PMID: 39113613 PMCID: PMC11410051 DOI: 10.1093/ismejo/wrae151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.
Collapse
Affiliation(s)
- Mingfei Chen
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romario Lopez
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Torben N Nielsen
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ria Gracielle Malana
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andrew J Hendrickson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Héloïse Carion
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Heidi J Smith
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Islam MS, Zhu J, Xiao L, Khan ZH, Saqib HSA, Gao M, Song Z. Enhancing rice quality and productivity: Multifunctional biochar for arsenic, cadmium, and bacterial control in paddy soil. CHEMOSPHERE 2023; 342:140157. [PMID: 37716553 DOI: 10.1016/j.chemosphere.2023.140157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The perilousness of arsenic and cadmium (As-Cd) toxicity in water and soil presents a substantial hazard to the ecosystem and human well-being. Additionally, this metal (loids) (MLs) can have a deleterious effect on rice quality and yield, owing to the existence of toxic stress. In response to the pressing concern of reducing the MLs accumulation in rice grain, this study has prepared magnesium-manganese-modified corn-stover biochar (MMCB), magnesium-manganese-modified eggshell char (MMEB), and a combination of both (MMCEB). To test the effectiveness of these amendments, several pot trials were conducted, utilizing 1% and 2% application rates. The research discovered that the MMEB followed by MMCEB treatment at a 2% rate yielded the most significant paddy and rice quality, compared to the untreated control (CON) and MMCB. MMEB and MMCEB also extensively decreased the MLs content in the grain than CON, thereby demonstrating the potential to enrich food security and human healthiness. In addition, MMEB and MMCEB augmented the microbial community configuration in the paddy soil, including As-Cd detoxifying bacteria, and decreased bioavailable form of the MLs in the soil compared to the CON. The amendments also augmented Fe/Mn-plaque which captured a considerable quantity of As-Cd in comparison to the CON. In conclusion, the utilization of multifunctional biochar, such as MMEB and MMCEB, is an encouraging approach to diminish MLs aggregation in rice grain and increase rice yield for the reparation of paddy soils via transforming microbiota especially enhancing As-Cd detoxifying taxa, thereby improving agroecology, food security, and human and animal health.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Junhua Zhu
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Ling Xiao
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Zulqarnain Haider Khan
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Minling Gao
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China.
| | - Zhengguo Song
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
5
|
Rito B, Almeida D, Coimbra C, Vicente D, Francisco R, Branco R, Weigand H, Morais PV. Post-measurement compressed calibration for ICP-MS-based metal quantification in mine residues bioleaching. Sci Rep 2022; 12:16007. [PMID: 36163387 PMCID: PMC9512927 DOI: 10.1038/s41598-022-19620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Bioleaching is an actual economical alternative to treat residues, which allows, depending on the chosen strategy, two possible outcomes: (1) a leachate enriched with target metals, or (2) a residue enriched in target metals through the leaching of interfering components (IC). This work aimed to study the metals released by bioprocessing the Panasqueira mine tailings, as a strategy to increase critical metals' relative concentration in residues. Biostimulation of the local microbiota was compared to a bioaugmentation approach using the autochthonous Diaphorobacter polyhydroxybutyrativorans strain B2A2W2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was selected to study the metals released in the leachate through multi-element external standards. A new data treatment method was developed to use a preliminary sweep of intensities to quantify the non-initial target metals concentration in the leachate, based on preliminary ICP-MS intensity measurements. The results demonstrated that biostimulation was an efficient bioleaching strategy for the IC silicon, aluminium, magnesium, selenium, manganese, zinc, iron, and copper, by decreasing concentration, resulting in a relative increase in the gallium and yttrium (10x) levels in the treated residue. The strategy followed to quantify a large number of elements with ICP-MS using a reduced number of data points for calibration proved valid and speeded up the analytical process.
Collapse
Affiliation(s)
- Beatriz Rito
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Diogo Almeida
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.,School of Chemistry, University of St. Andrews, Fife, Scotland, UK
| | - Carina Coimbra
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Diogo Vicente
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Romeu Francisco
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Rita Branco
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Harald Weigand
- Competence Centre for Sustainable Engineering and Environmental Systems, THM University of Applied Sciences, Wiesenstr. 14, 35390, Giessen, Germany
| | - Paula Vasconcelos Morais
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
6
|
Chung AP, Francisco R, Morais PV, Branco R. Genome mining to unravel potential metabolic pathways linked to gallium bioleaching ability of bacterial mine isolates. Front Microbiol 2022; 13:970147. [PMID: 36188007 PMCID: PMC9518604 DOI: 10.3389/fmicb.2022.970147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Gallium (Ga) is considered a high-tech Critical Metal, used in the manufacture of several microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). The current high demand for this critical metal urges the development of effective recovery processes from secondary resources such as mine tailings or electronic recycling material. The importance of bioleaching as a biotechnological process to recover metals prompted this study, where an integrative approach combining experimental and genomic analysis was undertaken to identify potential mechanisms involved in bioleaching ability and strategies to cope with high metal(loid)s concentrations in five mine isolates. The Clusters of Orthologous Group (COG) annotation showed that the “amino acid transport and metabolism” [E] was the most predominant functional category in all genomes. In addition, the KEEG pathways analysis also showed predicted genes for the biosynthetic pathways of most amino acids, indicating that amino acids could have an important role in the Ga leaching mechanism. The presence of effective resistance mechanisms to Ga and arsenic (As) was particularly important in GaAs bioleaching batch assays, and might explain the divergence in bioleaching efficiency among the bacterial strains. Rhodanobacter sp. B2A1Ga4 and Sphingomonas sp. A2-49 with higher resistance, mainly to As, were the most efficient bioleaching strains under these conditions. In bioleaching assays using cell-free spent medium Arthrobacter silviterrae A2-55 with lower As resistance outperformed all the other stains. Overall, higher efficiency in Ga leaching was obtained in bioleaching assays using GaAs when compared to GaN.
Collapse
|
7
|
Liang Z, Lin X, Liao Y, Tang T. Characteristics and diversity of endophytic bacteria in Panax notoginseng under high temperature analysed using full-length 16S rRNA sequencing. Arch Microbiol 2022; 204:435. [PMID: 35763100 DOI: 10.1007/s00203-022-03043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Panax notoginseng is a traditional Chinese medicinal herb with diverse properties that is cultivated in a narrow ecological range because of its sensitivity to high temperatures. Endophytic bacteria play a prominent role in plant response to climate warming. However, the endophytic bacterial structures in P. notoginseng at high temperatures are yet unclear. In the present study, the diversity and composition of the endophytic bacterial community, and their relationships with two P. notoginseng plants with different heat tolerance capacities were compared using the full-length 16S rRNA PacBio sequencing system. The results revealed that the diversity and richness of endophytic bacteria were negatively associated with the heat tolerance of P. notoginseng. Beneficial Cyanobacteria, Rhodanobacter and Sphingomonas may be recruited positively by heat-tolerant plants, while higher amounts of adverse Proteobacteria such as Cellvibrio fibrivorans derived from soil destructed the cellular protective barriers of heat-sensitive plants and caused influx of pathogenic bacteria Stenotrophomonas maltophilia. Harmonious and conflicting bacterial community was observed in heat-tolerant and heat-sensitive P. notoginseng, respectively, based on the co-occurrence network. Using functional gene prediction of metabolism, endophytic bacteria have been proposed to be symbiotic with host plants; the bacteria improved primary metabolic pathways and secondary metabolite production of plants, incorporated beneficial endophytes, and combated adverse endophytes to prompt the adaptation of P. notoginseng to a warming environment. These findings provided a new perspective on the function of endophytes in P. notoginseng adaptation to high temperatures, and could pave the way for expanding the cultivable range of P. notoginseng.
Collapse
Affiliation(s)
- Zhenting Liang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xianjing Lin
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yiqun Liao
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Ting Tang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
8
|
Li Q, Xiang P, Zhang T, Wu Q, Bao Z, Tu W, Li L, Zhao C. The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153479. [PMID: 35092784 DOI: 10.1016/j.scitotenv.2022.153479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The effects of phosphate mining on rhizosphere bacteria in surrounding vegetables and crops, including Lactuca sativa, Glycine max, and Triticum aestivum, are assessed in this study. As results, phosphate mining significantly increased the contents of some large elements, trace elements, and heavy metals in the surrounding agricultural soil, including phosphorus, magnesium, boron, cadmium, lead, arsenic, zinc, and chromium (P < 0.05). The community richness and diversity of bacteria in rhizosphere of the three crops were significantly reduced by phosphate mining (P < 0.05). Abundances of Sphingomonas and RB41 in the rhizosphere soil of phosphate mining area improved compared with the baseline in the non-phosphate mining area. Beta diversity analysis indicated that phosphate mining led to the differentiation of bacterial community structure in plant rhizospheres. Bacterial metabolic analysis indicated that different plant rhizosphere microbial flora developed various metabolic strategies in response to phosphate mining stress, including enriching unsaturated fatty acids, antibiological transport systems, cold shock proteins, etc. This study reveals the interaction between crops, rhizosphere bacteria, and soil pollutants. Select differentiated microbial strains suitable for specific plant rhizosphere environments are necessary for agricultural soil remediation. Additionally, the problem of destruction of agricultural soil and microecology caused by phosphate mining must be solved.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Caldeira JB, Chung AP, Piedade AP, Morais PV, Branco R. A DedA Family Membrane Protein in Indium Extrusion in Rhodanobacter sp. B2A1Ga4. Front Microbiol 2021; 12:772127. [PMID: 34925279 PMCID: PMC8679861 DOI: 10.3389/fmicb.2021.772127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 01/27/2023] Open
Abstract
Indium (In) is a critical metal widely used in electronic equipment, and the supply of this precious metal is a major challenge for sustainable development. The use of microorganisms for the recovery of this critical high-tech element has been considered an excellent eco-friendly strategy. The Rhodanobacter sp. B2A1Ga4 strain, highly resistant to In, was studied in order to disclose the bacterial mechanisms closely linked to the ability to cope with this metal. The mutation of the gene encoding for a DedA protein homolog, YqaA, affected drastically the In resistance and the cellular metabolic activity of strain Rhodanobacter sp. B2A1Ga4 in presence of this metal. This indicates that this protein plays an important role in its In resistance phenotype. The negative impact of In might be related to the high accumulation of the metal into the mutant cells showing In concentration up to approximately 4-fold higher than the native strain. In addition, the expression of the yqaA gene in this mutant reverted the bacterial phenotype with a significant decrease of In accumulation levels into the cells and an increase of In resistance. Membrane potential measurements showed similar values for native and mutant cells, suggesting that there was no loss of proton-motive force in the mutant cells. The results from this study suggest a potential role of this DedA family protein as a membrane transporter involved in the In efflux process. The mutant strain also has the potential to be used as a biotool in bioaccumulation strategies, for the recovery of In in biomining activities.
Collapse
Affiliation(s)
- Joana B Caldeira
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Coimbra, Portugal
| | - Ana Paula Chung
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Coimbra, Portugal
| | - Ana Paula Piedade
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Mechanical Engineering, Coimbra, Portugal
| | - Paula V Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Coimbra, Portugal
| | - Rita Branco
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Coimbra, Portugal
| |
Collapse
|
10
|
Chi BB, Lu YN, Yin PC, Liu HY, Chen HY, Shan Y. Sequencing and Comparative Genomic Analysis of a Highly Metal-Tolerant Penicillium janthinellum P1 Provide Insights Into Its Metal Tolerance. Front Microbiol 2021; 12:663217. [PMID: 34149650 PMCID: PMC8212970 DOI: 10.3389/fmicb.2021.663217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Heavy metal pollution is a global knotty problem and fungi hold promising potential for the remediation of wastewater containing heavy metals. Here, a new highly chromium-tolerance species, Penicillium janthinellum P1, is investigated. The genome of P1 was sequenced and assembled into 30 Mb genome size containing 10,955 predicted protein-coding genes with a GC content of 46.16% through an integrated method of Illumina short-read sequencing and single-molecule real-time Pacific Biosciences sequencing platforms. Through a phylogenetic analysis with model species of fungi, the evolutionary divergence time of Penicillium janthinellum P1 and Penicillium oxalicum 114-2 was estimated to be 74 MYA. 33 secondary metabolism gene clusters were identified via antiSMASH software, mainly including non-ribosomal peptide synthase genes and T1 polyketide synthase genes. 525 genes were annotated to encode enzymes that act on carbohydrates, involving 101 glucose-degrading enzymes and 24 polysaccharide synthase. By whole-genome sequence analysis, large numbers of metal resistance genes were found in strain P1. Especially ABC transporter and Superoxide dismutase ensure that the P1 fungus can survive in a chromium-polluted environment. ChrA and ChrR were also identified as key genes for chromium resistance. Analysis of their genetic loci revealed that the specific coding-gene arrangement may account for the fungus’s chromium resistance. Genetic information and comparative analysis of Penicillium janthinellum are valuable for further understanding the mechanism of high resistance to heavy metal chromium, and gene loci analysis provides a new perspective for identifying chromium-resistant strains.
Collapse
Affiliation(s)
- Bin-Bin Chi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Ya-Nan Lu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Ping-Chuan Yin
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hong-Yan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hui-Ying Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|