1
|
Qiu X, Zou Z, Lin T, Guo C, Lin D. Engineered Lactobacillus rhamnosus Producing 3-Hydroxybutyrate: A Dual-Action Therapeutic Strategy for Colon Cancer Cachexia. Biotechnol Bioeng 2025; 122:1574-1589. [PMID: 40055977 DOI: 10.1002/bit.28972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
3-hydroxybutyrate (3-HB), an essential endogenous metabolite, shows significant therapeutic potential in several disease contexts. However, its clinical application has been hampered by limitations, such as adverse effects on the gut microbiota. This study introduces a genetically engineered strain of Lactobacillus rhamnosus GG (LGGK) that integrates the benefits of 3-HB production with the probiotic properties of LGG. Using a murine colon cancer cachexia (CAC) model, LGGK supplementation significantly improved survival, reduced tumor progression, and alleviated muscle wasting. LGGK restored gut microbial diversity, increased the abundance of beneficial bacteria, and increased the production of short-chain fatty acids while reducing harmful microbial populations. In addition, LGGK supplementation demonstrated anti-inflammatory effects, effectively reducing elevated pro-inflammatory cytokines in serum and skeletal muscle. These findings highlight LGGK as a dual-action therapeutic approach that utilizes the metabolic benefits of 3-HB and the gut-modulating properties of LGG. This innovation offers a promising strategy for the treatment of CAC and potentially other metabolic and inflammatory disorders, and highlights the potential of engineered probiotics in advanced therapeutic applications.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhiyun Zou
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Taijie Lin
- Shanghai Diglean Health Technology Development Co., Shanghai, China
| | - Chenyun Guo
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Fu Z, Qiu H, Xu Y, Tan C, Wang H. Biological effects, properties and tissue engineering applications of polyhydroxyalkanoates: A review. Int J Biol Macromol 2025; 293:139281. [PMID: 39736299 DOI: 10.1016/j.ijbiomac.2024.139281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are a group of polymers with a variety of monomers, which are extracted from microorganisms and plants. Due to its good biocompatibility, biodegradability, tunable mechanical property and piezoelectricity, PHAs have been widely used in biomedical fields, such as bone, cartilage, nerve, vascular and skin tissue engineering. This review focuses on the in vivo synthesis, metabolism and biological functions of PHA, and the applications of PHAs in the field of tissue engineering and commercial were also summarized and discussed. Moreover, this review hints the future perspective and research direction of PHA-based materials in the challenging field of tissue engineering. We hope that this review will catalyze the continued advancement and broadening of PHAs' applications in biomedicine.
Collapse
Affiliation(s)
- Zeyu Fu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China
| | - He Qiu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China; Department of Cosmetic and Plastic Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yuan Xu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China
| | - Chang Tan
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China.
| | - Hang Wang
- Department of Cosmetic and Plastic Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Džidić Krivić A, Begagić E, Hadžić S, Bećirović A, Bećirović E, Hibić H, Tandir Lihić L, Kadić Vukas S, Bečulić H, Kasapović T, Pojskić M. Unveiling the Important Role of Gut Microbiota and Diet in Multiple Sclerosis. Brain Sci 2025; 15:253. [PMID: 40149775 PMCID: PMC11939953 DOI: 10.3390/brainsci15030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by neurodegeneration, axonal damage, demyelination, and inflammation. Recently, gut dysbiosis has been linked to MS and other autoimmune conditions. Namely, gut microbiota has a vital role in regulating immune function by influencing immune cell development, cytokine production, and intestinal barrier integrity. While balanced microbiota fosters immune tolerance, dysbiosis disrupts immune regulation, damages intestinal permeability, and heightens the risk of autoimmune diseases. The critical factor in shaping the gut microbiota and modulating immune response is diet. Research shows that high-fat diets rich in saturated fats are associated with disease progression. Conversely, diets rich in fruits, yogurt, and legumes may lower the risk of MS onset and progression. Specific dietary interventions, such as the Mediterranean diet (MD) and ketogenic diet, have shown potential to reduce inflammation, support neuroprotection, and promote CNS repair. Probiotics, by restoring microbial balance, may also help mitigate immune dysfunction noted in MS. Personalized dietary strategies targeting the gut microbiota hold promise for managing MS by modulating immune responses and slowing disease progression. Optimizing nutrient intake and adopting anti-inflammatory diets could improve disease control and quality of life. Understanding gut-immune interactions is essential for developing tailored nutritional therapies for MS patients.
Collapse
Affiliation(s)
- Amina Džidić Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Physiology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Emir Begagić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Doctoral Studies, School of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Semir Hadžić
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
- Department of Physiology, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina
| | - Amir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Emir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Harisa Hibić
- Department of Maxillofacial Surgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
4
|
Nishioka K, Ishimoto T, Sato M, Yasuda R, Nakamura Y, Watanabe H, Suzuki T, Araragi Y, Kato Y, Yoshida KI, Murayama N. Optimizing oral 3-hydroxybutyrate dosage using pharmacokinetic model to improve cognitive function and mood in healthy subjects. Front Nutr 2025; 11:1470331. [PMID: 39867559 PMCID: PMC11758625 DOI: 10.3389/fnut.2024.1470331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction The brain uses ketones, mainly 3-hydroxybutyrate (3-HB), as an alternative energy source. Therefore, oral intake of 3-HB may help maintain brain health. Previous studies indicated that achieving a maximum concentration (Cmax) of 3-HB in plasma at 0.28 mM could initiate ketone metabolism in the brain; we hypothesized that attaining this Cmax would improve brain health. Methods We aimed to demonstrate the efficacy of an optimized single oral dose of 3-HB on cognitive function and mood through two clinical studies: a pharmacokinetic study and an efficacy study. In the pharmacokinetic study, healthy subjects were ingested 2 and 4 g of 3-HB to construct a compartment model to predict the minimum oral dose of 3-HB needed to achieve the target Cmax. In the efficacy study, a randomized, double-blinded, and placebo-controlled crossover trial, the effects of 3-HB at the predicted doses on cognitive function and mood in healthy subjects were assessed by a serial arithmetic test (SAT), the cognitrax, the profile of mood states 2nd edition (POMS2), and fatigue visual analog scale (VAS). Results In the pharmacokinetic study, a one-compartment model that includes saturable and non-saturable absorption pathways, constant biosynthesis, and the linear elimination of 3-HB after oral administration were constructed. The model principally reflected the observed serum 3-HB concentrations profiles and predicted a minimum dose of 3.5 g needed to achieve the target Cmax. In the efficacy study, although no significant difference was observed in any cognitive domains assessed by the Cognitrax, total responses and correct answers in the SAT were significantly improved in the active group receiving 3.5 g of 3-HB compared to the placebo group. Regarding the POMS2, confusion-bewilderment, fatigue-inertia, vigor-activity, and total mood disturbance scales were significantly improved in the active group compared to the placebo group. Additionally, fatigue VAS were also significantly improved in the active group compared to the placebo group. Discussion We successfully established a one-compartment model for oral 3-HB intake and demonstrated partial efficacy on cognitive function and broad efficacy on mood in healthy subjects with a single oral dose of 3.5 g of 3-HB optimized by the model. Clinical trial registration https://www.umin.ac.jp/ctr/index-j.htm, identifier [UMIN000042095, UMIN000046666].
Collapse
Affiliation(s)
- Kentaro Nishioka
- Research Institute, Suntory Global Innovation Center Ltd., Kyoto, Japan
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mariko Sato
- Research Institute, Suntory Global Innovation Center Ltd., Kyoto, Japan
| | - Ruki Yasuda
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yumi Nakamura
- Research Institute, Suntory Global Innovation Center Ltd., Kyoto, Japan
| | - Hiroshi Watanabe
- Research Institute, Suntory Global Innovation Center Ltd., Kyoto, Japan
| | - Toshihide Suzuki
- Research Institute, Suntory Global Innovation Center Ltd., Kyoto, Japan
| | - Yudai Araragi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Norihito Murayama
- Research Institute, Suntory Global Innovation Center Ltd., Kyoto, Japan
| |
Collapse
|
5
|
Balestra F, Negro R, De Luca M, Depalo N, Rizzi F, Panzetta G, Arrè V, Mastrogiacomo R, Coletta S, Stabile D, Pesole PL, Cerabino N, Di Chito M, Shahini E, Giannelli G, De Pergola G, Scavo MP. Extracellular Vesicles Modulate Liver Cells Viability and Reactive Oxygen Species in Patients Following a Very Low-Calorie Ketogenic Diet. Nutrients 2024; 16:2386. [PMID: 39125267 PMCID: PMC11314450 DOI: 10.3390/nu16152386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The VLCKD is a diet recognized to promote rapid fat mobilization and reduce inflammation, hepatic steatosis, and liver fibrosis. Extracellular vesicles (EVs) mediate cell-to-cell communication. The aim of the study is to investigate the role of circulating EVs in cell proliferation, ketone bodies, and ROS production in patients on an 8-week VLCKD regimen. Participants were classified as responders (R) or non-responders (NR) to VLCKD treatment based on their fibroscan results. In vitro experiments with the hepatic cell lines HEPA-RG (normal hepatocytes) and LX-2 (stellate cells) were conducted to investigate the effects of circulating EVs on cell viability, ROS production, and ketone body presence. The findings reveal a notable reduction in cell viability in both cell lines when treated with exosomes (EXOs). In contrast, treatment with microvesicles (MVs) did not appear to affect cell viability, which remained unchanged. Additionally, the levels of ketone bodies measured in urine were not consistently correlated with the reduction of fibrosis in responders (R). Similarly, an increase in ketone bodies was observed in non-responders (NR), which was also not aligned with the expected reduction in fibrosis. This inconsistency stands in stark contrast to the levels of Reactive Oxygen Species (ROS), which exhibited a clear and consistent pattern in accordance with the dietary intervention. Finally, in this preliminary study, ROS has been identified as a potential diet adherence marker for VLCKD patients; the ROS levels reliably follow the progression of the fibrosis response, providing a more accurate reflection of the therapeutic effects.
Collapse
Affiliation(s)
- Francesco Balestra
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (F.B.); (M.D.L.); (G.P.)
| | - Roberto Negro
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (R.N.); (V.A.)
| | - Maria De Luca
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (F.B.); (M.D.L.); (G.P.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (F.R.); (R.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70125 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (F.R.); (R.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70125 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (F.B.); (M.D.L.); (G.P.)
| | - Valentina Arrè
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (R.N.); (V.A.)
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (F.R.); (R.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70125 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Sergio Coletta
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (S.C.); (D.S.); (P.L.P.)
| | - Dolores Stabile
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (S.C.); (D.S.); (P.L.P.)
| | - Pasqua Letizia Pesole
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (S.C.); (D.S.); (P.L.P.)
| | - Nicole Cerabino
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, Via Turi 27, 70013 Castellana Grotte, Italy; (N.C.); (M.D.C.); (G.D.P.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, Via Turi 27, 70013 Castellana Grotte, Italy; (N.C.); (M.D.C.); (G.D.P.)
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy;
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, Via Turi 27, 70013 Castellana Grotte, Italy; (N.C.); (M.D.C.); (G.D.P.)
| | - Maria Principia Scavo
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (F.B.); (M.D.L.); (G.P.)
| |
Collapse
|
6
|
Shah P, Sawhney A, Anamika F, Kanagala SG, Parikh K, Mendpara V, Garg N, Jain R. Understanding the Relationship between the Ketogenic Diet and the Heart: A Novel Therapeutic Potential for Cardiovascular Health. Cardiovasc Hematol Agents Med Chem 2024; 22:407-412. [PMID: 39431374 DOI: 10.2174/0118715257267341231031120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2024]
Abstract
Obesity and cardiovascular diseases are major health problems worldwide, and weight loss is used as a treatment strategy to enhance various aspects. While there are many weight loss methods, one of the most effective is through a dietary approach. The ketogenic diet (KD), which is characterized by low carbohydrates and high levels of fat and/or protein, is used in obese patients as it is a promising treatment option for weight loss as well as for controlling the risk factors for cardiovascular diseases, as seen in its effects on cardio-metabolic outcomes, particularly in obesity, heart failure, and hypertension. In this review, we summarize the clinical evidence of the efficacy and safety of the KD in controlling risk factors for cardiovascular diseases and discuss the possible mechanisms of action based on recent evidence in understanding the influence of the KD at the cellular and molecular levels.
Collapse
Affiliation(s)
- Priyanshi Shah
- Department of Internal Medicine, Narendra Modi Medical College, Ahmedabad, Gujarat, India
| | - Aanchal Sawhney
- Department of Internal Medicine, Crozer Chester Medical Center, Pennsylvania, USA
| | - Fnu Anamika
- Department of Internal Medicine, University College of Medical Sciences, New Delhi, India
| | | | - Kinna Parikh
- Department of Internal Medicine, GMERS Medical College, Gandhinagar, Gujarat, India
| | - Vaidehi Mendpara
- Department of Internal Medicine, Government Medical College, Surat, Gujarat, India
| | - Nikita Garg
- Department of Internal Medicine, Southern Illinois University School of Medicine, Illinois, United States
| | - Rohit Jain
- Department of Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Pennsylvania, United States
| |
Collapse
|
7
|
Lin C, Wang S, Xie J, Zhu J, Xu J, Liu K, Chen J, Yu M, Zhong H, Huang K, Pan S. Ketogenic diet and β-Hydroxybutyrate alleviate ischemic brain injury in mice via an IRAKM-dependent pathway. Eur J Pharmacol 2023; 955:175933. [PMID: 37481199 DOI: 10.1016/j.ejphar.2023.175933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Ketogenic diet (KD) is a classical nonpharmacological therapy that has recently been shown to benefit cerebral ischemia, but the mechanism remains unclear. This study investigated the neuroprotective effects of KD pretreatment and β-hydroxybutyrate (BHB, bioactive product of KD) post-treatment in a mouse model of temporary middle cerebral artery occlusion (tMCAO). Neurological function, infarct volume, as well as inflammatory reactions are evaluated 24 h after ischemia. Results showed that both KD pretreatment or BHB post-treatment improved the Bederson score and Grip test score, reduced infarct volume and the extravasation of IgG, suppressed the over-activation of microglia, and modulated the expression of cytokines. Mechanically, we found that both KD pretreatment or BHB post-treatment significantly stimulated the expression of interleukin-1 receptor-associated kinase M (IRAKM) and then inhibited the nuclear translocation of NF-κB. IRAKM deletion (Irakm-/-) exacerbated tMCAO-induced neurovascular injuries, and aggravated neuroinflammatory response. Moreover, KD pretreatment or BHB post-treatment lost their neuroprotection in the tMCAO-treated Irakm-/- mice. Our results support that KD pretreatment and BHB post-treatment alleviate ischemic brain injury in mice, possibly via an IRAKM-dependent way.
Collapse
Affiliation(s)
- Chuman Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shengnan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Critical Care Medicine, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510420, China
| | - Jiaxin Xie
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiawei Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiancong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingjia Yu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hengren Zhong
- Department of Clinical Research Center, Hainan Provincial Hospital of Chinese Medicine, Haikou, Hainan, 570203, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
8
|
Zambrano AK, Cadena-Ullauri S, Guevara-Ramírez P, Frias-Toral E, Ruiz-Pozo VA, Paz-Cruz E, Tamayo-Trujillo R, Chapela S, Montalván M, Sarno G, Guerra CV, Simancas-Racines D. The Impact of a Very-Low-Calorie Ketogenic Diet in the Gut Microbiota Composition in Obesity. Nutrients 2023; 15:2728. [PMID: 37375632 DOI: 10.3390/nu15122728] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The very-low-calorie KD (VLCKD) is characterized by a caloric intake of under 800 kcal/day divided into less than 50 g/day of carbohydrate (13%) and 1 to 1.5 g of protein/kg of body weight (44%) and 43% of fat. This low carbohydrate intake changes the energy source from glucose to ketone bodies. Moreover, clinical trials have consistently shown a beneficial effect of VLCKD in several diseases, such as heart failure, schizophrenia, multiple sclerosis, Parkinson's, and obesity, among others. The gut microbiota has been associated with the metabolic conditions of a person and is regulated by diet interactions; furthermore, it has been shown that the microbiota has a role in body weight homeostasis by regulating metabolism, appetite, and energy. Currently, there is increasing evidence of an association between gut microbiota dysbiosis and the pathophysiology of obesity. In addition, the molecular pathways, the role of metabolites, and how microbiota modulation could be beneficial remain unclear, and more research is needed. The objective of the present article is to contribute with an overview of the impact that VLCKD has on the intestinal microbiota composition of individuals with obesity through a literature review describing the latest research regarding the topic and highlighting which bacteria phyla are associated with obesity and VLCKD.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Gerardo Sarno
- "San Giovanni di Dio e Ruggi D'Aragona" University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| | - Claudia V Guerra
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
9
|
Satoh T. New prebiotics by ketone donation. Trends Endocrinol Metab 2023:S1043-2760(23)00091-7. [PMID: 37271711 DOI: 10.1016/j.tem.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Integrity of the microbiome is an essential element for human gut health. 3-Hydroxybutyrate (3HB) secreted into the gut lumen has gained attention as a regulator of gut physiology, including stem cell expansion. In this opinion, I propose new prebiotics leading to gut health by use of a ketone (3HB) donor. When exogenous 3HB is supplied through ketone donation, it has the potential to markedly improve gut health by altering the gut microbiome and systemic metabolic status. Poly-hydroxybutyrate (PHB) donates 3HB and primarily influences microbiota, making it an effective prebiotic for improving the gut environment. Thus, exogenous 3HB donation to the lumen of the gut may aid gut health by maintaining the integrity of microbiome.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Antiaging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Japan.
| |
Collapse
|
10
|
The Ketogenic Diet and Neuroinflammation: The Action of Beta-Hydroxybutyrate in a Microglial Cell Line. Int J Mol Sci 2023; 24:ijms24043102. [PMID: 36834515 PMCID: PMC9967444 DOI: 10.3390/ijms24043102] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The ketogenic diet (KD), a diet high in fat and protein but low in carbohydrates, is gaining much interest due to its positive effects, especially in neurodegenerative diseases. Beta-hydroxybutyrate (BHB), the major ketone body produced during the carbohydrate deprivation that occurs in KD, is assumed to have neuroprotective effects, although the molecular mechanisms responsible for these effects are still unclear. Microglial cell activation plays a key role in the development of neurodegenerative diseases, resulting in the production of several proinflammatory secondary metabolites. The following study aimed to investigate the mechanisms by which BHB determines the activation processes of BV2 microglial cells, such as polarization, cell migration and expression of pro- and anti-inflammatory cytokines, in the absence or in the presence of lipopolysaccharide (LPS) as a proinflammatory stimulus. The results showed that BHB has a neuroprotective effect in BV2 cells, inducing both microglial polarization towards an M2 anti-inflammatory phenotype and reducing migratory capacity following LPS stimulation. Furthermore, BHB significantly reduced expression levels of the proinflammatory cytokine IL-17 and increased levels of the anti-inflammatory cytokine IL-10. From this study, it can be concluded that BHB, and consequently the KD, has a fundamental role in neuroprotection and prevention in neurodegenerative diseases, presenting new therapeutic targets.
Collapse
|
11
|
Ye R, Cheng Y, Ge Y, Xu G, Tu W. A bibliometric analysis of the global trends and hotspots for the ketogenic diet based on CiteSpace. Medicine (Baltimore) 2023; 102:e32794. [PMID: 36749276 PMCID: PMC9902013 DOI: 10.1097/md.0000000000032794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ketogenic diet (KD) is a potential nutritional therapy that is frequently utilized in various conditions. More and more studies are being done on KD in recent years. However, as far as we know, few studies have made an effort to offer a thorough synthesis and assessment of this topic. This paper aims to do a rigorous and thorough evaluation of the knowledge structure, development trend, and research hotspot of scientific outputs connected to KD. The bibliographic records connected to KD from January 1, 2001 to April 22, 2022 were collected using the core collection database of Web of Science. The complex data input, that consisted of the amount of publications, journals, authors, institutions, countries, keywords and cited references, was generated and analyzed visually using CiteSpace. A total of 2676 literatures on the KD were published between 2001 and 2022. The most KD-related publications were found in Epilepsia and Epilepsia Research. The authors with the most KD-related papers are Kossoff EH and Rho J. The United States is the country with the most publications, and Johns Hopkins University, Johns Hopkins University Hospital, and Johns Hopkins Medical Institutions are the institutions with the most articles. The high frequency keywords are "KD," "ketone body," "children," "efficacy," "weight loss," "low carbohydrate diet," "metabolism," "epilepsy," "beta hydroxybutyrate," and "modified atkins diet." The 2018 study by Kossoff EH on epilepsia and the 2017 study by Puchalska P on ketone body metabolism earned 127 and 114 citations, respectively. The results of this bibliometric analysis provide information on the state and trends in KD and may be used by researchers to pinpoint hot issues and discover new areas of study.
Collapse
Affiliation(s)
- Ran Ye
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yanfei Cheng
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingying Ge
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guihua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Guihua Xu, Nanjing University of Chinese Medicine, No.138, Xianlin Avenue, Nanjing 210023, Jiangsu, China (e-mail: )
| | - Wenjing Tu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Liu X, Han L, Bi S, Ding X, Sheng Q, Jiang Y, Guan G, Niu Q, Jing X. Differential metabolites in cirrhotic patients with hepatitis B and muscle mass loss. Front Nutr 2023; 10:1068779. [PMID: 36875836 PMCID: PMC9980345 DOI: 10.3389/fnut.2023.1068779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Background Sarcopenia leads to complications (infections, hepatic encephalopathy and ascites) and poor overall survival in patients with cirrhosis, in which the phenotypic presentation is loss of muscle mass. This study aimed to reveal the metabolic profile and identify potential biomarkers in cirrhotic patients with hepatitis B virus and muscle mass loss. Method Twenty decompensated cirrhotic patients with HBV and muscle mass loss were designated Group S; 20 decompensated cirrhotic patients with HBV and normal muscle mass were designated Group NS; and 20 healthy people were designated Group H. Muscle mass loss was defined as the skeletal muscle mass index less than 46.96 cm2/m2 for males and less than 32.46 cm2/m2 for females. Gas chromatography-mass spectrometry was used to explore the distinct metabolites and pathways in the three groups. Results Thirty-seven metabolic products and 25 associated metabolic pathways were significantly different in the Group S patients from Group NS patients. Strong predictive value of 11 metabolites (inosine-5'-monophosphate, phosphoglycolic acid, D-fructose-6-phosphate, N-acetylglutamate, pyrophosphate, trehalose-6-phosphate, fumaric acid, citrulline, creatinine, (r)-3-hydroxybutyric acid, and 2-ketobutyric acid) were selected as potential biomarkers in Group S patients compared with Group NS patients. Two pathways may be associated with loss of muscle mass in patients with liver cirrhosis: amino acid metabolism and central carbon metabolism in cancer. Conclusion Seventy differential metabolites were identified in patients who have liver cirrhosis and loss of muscle mass compared with patients who have cirrhosis and normal muscle mass. Certain biomarkers might distinguish between muscle mass loss and normal muscle mass in HBV-related cirrhosis patients.
Collapse
Affiliation(s)
- Xuechun Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lei Han
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shenghua Bi
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueli Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qi Sheng
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yueping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ge Guan
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Zhang Y, Liu K, Li Y, Ma Y, Wang Y, Fan Z, Li Y, Qi J. D-beta-hydroxybutyrate protects against microglial activation in lipopolysaccharide-treated mice and BV-2 cells. Metab Brain Dis 2022; 38:1115-1126. [PMID: 36543978 DOI: 10.1007/s11011-022-01146-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Microglial activation is a key event in neuroinflammation, which, in turn, is a central process in neurological disorders. In this study, we investigated the protective effects of D-beta-hydroxybutyrate (BHB) against microglial activation in lipopolysaccharide (LPS)-treated mice and BV-2 cells. The effects of BHB in mice were assessed using behavioral testing, morphological analysis and immunofluorescence labeling for the microglial marker ionizing calcium-binding adaptor molecule 1 (IBA-1) and the inflammatory cytokine interleukin-6 (IL-6) in the hippocampus. Moreover, we examined the levels of the inflammatory IL-6 and tumor necrosis factor-α (TNF-α), as well as those of the neuroprotective brain-derived neurotrophic factor (BDNF) and transforming growth factor-β (TGF-β) in the brain. In addition, we examined the effects of BHB on IL-6, TNF-α, BDNF, TGF-β, reactive oxygen species (ROS) level and cell viability in LPS-stimulated BV-2 cells. BHB treatments attenuated behavioral abnormalities, reduced the number of IBA-1-positive cells and the intensity of IL-6 fluorescence in the hippocampus, with amelioration of microglia morphological changes in the LPS-treated mice. Furthermore, BHB inhibited IL-6 and TNF-α generation, but promoted BDNF and TGF-β production in the brain of LPS-treated mice. In vitro, BHB inhibited IL-6 and TNF-α generation, increased BDNF and TGF-β production, reduced ROS level, ameliorated morphological changes and elevated cell viability of LPS-stimulated BV-2 cells. Together, our findings suggest that BHB exerts protective effects against microglial activation in vitro and in vivo, thereby reducing neuroinflammation.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Kun Liu
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yunpeng Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yu Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Zihan Fan
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
14
|
Duan Z, Song P, Yang C, Deng L, Jiang Y, Deng F, Jiang X, Chen Y, Yang G, Ma Y, Deng W. The impact of hyperglycaemic crisis episodes on long-term outcomes for inpatients presenting with acute organ injury: A prospective, multicentre follow-up study. Front Endocrinol (Lausanne) 2022; 13:1057089. [PMID: 36545333 PMCID: PMC9760800 DOI: 10.3389/fendo.2022.1057089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND The long-term clinical outcome of poor prognosis in patients with diabetic hyperglycaemic crisis episodes (HCE) remains unknown, which may be related to acute organ injury (AOI) and its continuous damage after hospital discharge. This study aimed to observe the clinical differences and relevant risk factors in HCE with or without AOI. METHODS A total of 339 inpatients were divided into an AOI group (n=69) and a non-AOI group (n=270), and their differences and risk factors were explored. The differences in clinical outcomes and prediction models for evaluating the long-term adverse events after hospital discharge were established. RESULTS The mortality among cases complicated by AOI was significantly higher than that among patients without AOI [8 (11.59%) vs. 11 (4.07%), Q = 0.034] during hospitalization. After a 2-year follow-up, the mortality was also significantly higher in patients with concomitant AOI than in patients without AOI after hospital discharge during follow-up [13 (21.31%) vs. 15 (5.8%), Q < 0.001]. The long-term adverse events in patients with concomitant AOI were significantly higher than those in patients without AOI during follow-up [15 (24.59%) vs. 31 (11.97%), Q = 0.015]. Furthermore, Blood β-hydroxybutyric acid (P = 0.003), Cystatin C (P <0.001), serum potassium levels (P = 0.001) were significantly associated with long-term adverse events after hospital discharge. CONCLUSIONS The long-term prognosis of HCE patients complicated with AOI was significantly worse than that of HCE patients without AOI. The laboratory indicators were closely correlated with AOI, and future studies should explore the improvement of clinical outcome in response to timely interventions.
Collapse
Affiliation(s)
- Zixiao Duan
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiyang Song
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Cheng Yang
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Liling Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Youzhao Jiang
- Department of Endocrinology, Banan People’s Hospital of Chongqing, Chongqing, China
| | - Fang Deng
- Department of Endocrinology, Chongqing Southwest Hospital, Chongqing, China
| | - Xiaoyan Jiang
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Yan Chen
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Ma
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| |
Collapse
|
15
|
Suk FM, Wu CY, Chiu WC, Chien CY, Chen TL, Liao YJ. HMGCS2 Mediation of Ketone Levels Affects Sorafenib Treatment Efficacy in Liver Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228015. [PMID: 36432116 PMCID: PMC9697984 DOI: 10.3390/molecules27228015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Primary liver cancer is the fifth leading death of cancers in men, and hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancer cases. Sorafenib is a first-line drug for advanced-stage HCC patients. Sorafenib is a multi-target kinase inhibitor that blocks tumor cell proliferation and angiogenesis. Despite sorafenib treatment extending survival, some patients experience side effects, and sorafenib resistance does occur. 3-Hydroxymethyl glutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketogenesis, which synthesizes the ketone bodies, β-hydroxybutyrate (β-HB) and acetoacetate (AcAc). β-HB is the most abundant ketone body which is present in a 4:1 ratio compared to AcAc. Recently, ketone body treatment was found to have therapeutic effects against many cancers by causing metabolic alternations and cancer cell apoptosis. Our previous publication showed that HMGCS2 downregulation-mediated ketone body reduction promoted HCC clinicopathological progression through regulating c-Myc/cyclin D1 and caspase-dependent signaling. However, whether HMGCS2-regulated ketone body production alters the sensitivity of human HCC to sorafenib treatment remains unclear. In this study, we showed that HMGCS2 downregulation enhanced the proliferative ability and attenuated the cytotoxic effects of sorafenib by activating expressions of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-P38, and p-AKT. In contrast, HMGCS2 overexpression decreased cell proliferation and enhanced the cytotoxic effects of sorafenib in HCC cells by inhibiting ERK activation. Furthermore, we showed that knockdown HMGCS2 exhibited the potential migratory ability, as well as decreasing zonula occludens protein (ZO)-1 and increasing c-Myc expression in both sorafenib-treated Huh7 and HepG2 cells. Although HMGCS2 overexpression did not alter the migratory effect, expressions of ZO-1, c-Myc, and N-cadherin decreased in sorafenib-treated HMGCS2-overexpressing HCC cells. Finally, we investigated whether ketone treatment influences sorafenib sensitivity. We showed that β-HB pretreatment decreased cell proliferation and enhanced antiproliferative effect of sorafenib in both Huh7 and HepG2 cells. In conclusion, this study defined the impacts of HMGCS2 expression and ketone body treatment on influencing the sorafenib sensitivity of liver cancer cells.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Ying Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chia-Ying Chien
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Tzu-Lang Chen
- Department of Family Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3333)
| |
Collapse
|
16
|
Wu JP. Combined Ketogenic Diet and Walking Exercise Interventions in Community Older Frailty and Skeletal Muscle Sarcopenia. FRAILTY AND SARCOPENIA - RECENT EVIDENCE AND NEW PERSPECTIVES 2022. [DOI: 10.5772/intechopen.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The ketogenic diet and walking exercise training interventions are two key public health lifestyle factors. The potential of combined lifestyle factors interventions focused on getting to compliance in diet and exercise. A balanced ketogenic diet and regular exercise interventions is key modifiable factor to the prevention and management of community older frailty and skeletal muscle sarcopenia. Influence health across the lifespan and reduction of the risk of premature death through several biochemistry mechanisms. Community older group’s lifestyle factors interventions contribute identity in their natural living environment. While the older health benefits of walking exercise training interventions strategies are commonly to study, combining ketogenic diet and walking exercise interventions can induce greater benefits in community older groups.
Collapse
|
17
|
The Evolution of Ketosis: Potential Impact on Clinical Conditions. Nutrients 2022; 14:nu14173613. [PMID: 36079870 PMCID: PMC9459968 DOI: 10.3390/nu14173613] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ketone bodies are small compounds derived from fatty acids that behave as an alternative mitochondrial energy source when insulin levels are low, such as during fasting or strenuous exercise. In addition to the metabolic function of ketone bodies, they also have several signaling functions separate from energy production. In this perspective, we review the main current data referring to ketone bodies in correlation with nutrition and metabolic pathways as well as to the signaling functions and the potential impact on clinical conditions. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) for a systematic search until July 2022 using MeSH keywords/terms (i.e., ketone bodies, BHB, acetoacetate, inflammation, antioxidant, etc.). The literature data reported in this review need confirmation with consistent clinical trials that might validate the results obtained in in vitro and in vivo in animal models. However, the data on exogenous ketone consumption and the effect on the ketone bodies’ brain uptake and metabolism might spur the research to define the acute and chronic effects of ketone bodies in humans and pursue the possible implication in the prevention and treatment of human diseases. Therefore, additional studies are required to examine the potential systemic and metabolic consequences of ketone bodies.
Collapse
|
18
|
Qi J, Gan L, Fang J, Zhang J, Yu X, Guo H, Cai D, Cui H, Gou L, Deng J, Wang Z, Zuo Z. Beta-Hydroxybutyrate: A Dual Function Molecular and Immunological Barrier Function Regulator. Front Immunol 2022; 13:805881. [PMID: 35784364 PMCID: PMC9243231 DOI: 10.3389/fimmu.2022.805881] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
Ketone bodies are crucial intermediate metabolites widely associated with treating metabolic diseases. Accumulating evidence suggests that ketone bodies may act as immunoregulators in humans and animals to attenuate pathological inflammation through multiple strategies. Although the clues are scattered and untrimmed, the elevation of these ketone bodies in the circulation system and tissues induced by ketogenic diets was reported to affect the immunological barriers, an important part of innate immunity. Therefore, beta-hydroxybutyrate, a key ketone body, might also play a vital role in regulating the barrier immune systems. In this review, we retrospected the endogenous ketogenesis in animals and the dual roles of ketone bodies as energy carriers and signal molecules focusing on beta-hydroxybutyrate. In addition, the research regarding the effects of beta-hydroxybutyrate on the function of the immunological barrier, mainly on the microbiota, chemical, and physical barriers of the mucosa, were outlined and discussed. As an inducible endogenous metabolic small molecule, beta-hydroxybutyrate deserves delicate investigations focusing on its immunometabolic efficacy. Comprehending the connection between ketone bodies and the barrier immunological function and its underlining mechanisms may help exploit individualised approaches to treat various mucosa or skin-related diseases.
Collapse
Affiliation(s)
- Jiancheng Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Linli Gan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jizong Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
19
|
Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions. Nutrients 2022; 14:nu14122384. [PMID: 35745113 PMCID: PMC9229939 DOI: 10.3390/nu14122384] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ketogenic Diet is a nutritional pattern often used as dietotherapy in inflammatory diseases, including neurological disorders. Applied on epileptic children since 1920, in recent years it has been taken into account again as a tool to both reduce inflammatory burdens and ameliorate the nutritional status of patients affected by different pathologies. Multiple sclerosis (MS) is considered an immune-mediated neuro-inflammatory disease and diet is a possible factor in its pathogenesis. The aim of this work is to investigate the main potential targets of MS-related impairments, in particular the cognitive deficits, focusing on the alteration of biomarkers such as the Brain Derived-Neurotrophic Factor and the Tryptophan/Kynurenine ratio that could play a role on neuroprotection and thus on MS progression. Furthermore, we here propose nutritional suggestions which are useful in the development of a ketogenic diet protocol that takes advantage of the anti-inflammatory properties of low-carbohydrate foods from the Mediterranean diet to be applied to subjects with MS. In conclusion, this approach will allow one to develop the ketogenic diet combined with a modified Mediterranean diet as a possible tool to improve neuroinflammation in multiple sclerosis.
Collapse
|
20
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Kolwicz SC. Ketone Body Metabolism in the Ischemic Heart. Front Cardiovasc Med 2021; 8:789458. [PMID: 34950719 PMCID: PMC8688810 DOI: 10.3389/fcvm.2021.789458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Ketone bodies have been identified as an important, alternative fuel source in heart failure. In addition, the use of ketone bodies as a fuel source has been suggested to be a potential ergogenic aid for endurance exercise performance. These findings have certainly renewed interest in the use of ketogenic diets and exogenous supplementation in an effort to improve overall health and disease. However, given the prevalence of ischemic heart disease and myocardial infarctions, these strategies may not be ideal for individuals with coronary artery disease. Although research studies have clearly defined changes in fatty acid and glucose metabolism during ischemia and reperfusion, the role of ketone body metabolism in the ischemic and reperfused myocardium is less clear. This review will provide an overview of ketone body metabolism, including the induction of ketosis via physiological or nutritional strategies. In addition, the contribution of ketone body metabolism in healthy and diseased states, with a particular emphasis on ischemia-reperfusion (I-R) injury will be discussed.
Collapse
|