1
|
Tian X, Yuan X, He Z, Li W, Li J, He Y, Deng S, Guo J, Fang M, Wang D. Construction of the Red Swamp Crayfish ( Procambarus clarkii) Family Selection Population and Whole Genome Sequencing to Screen WIPFI Candidate Genes Related to Growth. Genes (Basel) 2025; 16:174. [PMID: 40004503 PMCID: PMC11855636 DOI: 10.3390/genes16020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives:Procambarus clarkii is an important freshwater aquaculture species in China which has the characteristics of rich nutrition and delicious taste. However, the expansion of aquaculture scale, germplasm degradation, and other problems that have become increasingly prominent seriously restrict the sustainable development of the crayfish industry. Genetic improvement is an urgent need for the crayfish aquaculture industry, and selective breeding is an important way to improve the crayfish varieties. Methods: We established full-sibling family populations of the red swamp crayfish and performed whole-genome resequencing of the F3 family-selected red swamp crayfish population and wild red swamp crayfish populations from four regions of Hunan Province (Nanx, Mil, Caish, and Wangc). Results: The results showed that there was a clear separation between the wild population and the family population, and the decline rate was slightly faster in the wild population than that of the family breeding population. There was local gene flow between family populations, as well as gene flow between Mil, Caish, and families. In addition, 52 SNP loci related to body weight traits were identified by genome-wide association analysis, and the candidate gene WIPF1 related to growth was screened out. Conclusions: We established a line selection population of red swamp crayfish and obtained more stable candidate lines. In addition, this study identified Wiskott-Aldrich syndrome protein-interacting protein family member 1 (WIPF1) as a candidate gene related to body weight for the first time. The results provide a theoretical basis for exploring the growth mechanism of P. clarkii and carrying out in-depth genetic improvement.
Collapse
Affiliation(s)
- Xing Tian
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Fisheries Science Institute, Changsha 410153, China; (X.T.); (X.Y.); (Z.H.); (J.L.); (Y.H.); (S.D.)
| | - Xiudan Yuan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Fisheries Science Institute, Changsha 410153, China; (X.T.); (X.Y.); (Z.H.); (J.L.); (Y.H.); (S.D.)
| | - Zhigang He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Fisheries Science Institute, Changsha 410153, China; (X.T.); (X.Y.); (Z.H.); (J.L.); (Y.H.); (S.D.)
| | - Weiguo Li
- Huazhi Biotechnology Co., Ltd., 618 Heping Road, Changsha 410153, China;
| | - Jinlong Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Fisheries Science Institute, Changsha 410153, China; (X.T.); (X.Y.); (Z.H.); (J.L.); (Y.H.); (S.D.)
| | - Yong He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Fisheries Science Institute, Changsha 410153, China; (X.T.); (X.Y.); (Z.H.); (J.L.); (Y.H.); (S.D.)
| | - Shiming Deng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Fisheries Science Institute, Changsha 410153, China; (X.T.); (X.Y.); (Z.H.); (J.L.); (Y.H.); (S.D.)
| | - Jiarong Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Fisheries Science Institute, Changsha 410153, China; (X.T.); (X.Y.); (Z.H.); (J.L.); (Y.H.); (S.D.)
| | - Miaoquan Fang
- Huazhi Biotechnology Co., Ltd., 618 Heping Road, Changsha 410153, China;
| | - Dongwu Wang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Fisheries Science Institute, Changsha 410153, China; (X.T.); (X.Y.); (Z.H.); (J.L.); (Y.H.); (S.D.)
| |
Collapse
|
2
|
Yan T, Xie YY, Zhou B, Kuang X, Li QZ, Zhao FQ, Li QD, He B. Rice-Fish Farming Improved Antioxidant Defences, Glucose Metabolism, and Muscle Nutrient of Carassius auratus in Sichuan Province. Metabolites 2024; 14:710. [PMID: 39728491 DOI: 10.3390/metabo14120710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between Carassius auratus reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in C. auratus from rice paddies were considerably higher compared to those from ponds. Additionally, the hepatic catalase (CAT) activity in fish from paddy (2.45 ± 0.16 U/mg) exceeded that of their pond counterparts (2.27 ± 0.25 U/mg). Regarding glucose metabolism, the activities of key enzymes such as Na+/K+-ATPase (NKA) (paddy: 82.45 ± 6.11 U/g; pond: 78.53 ± 7.18 U/g), hexokinase (HK) (paddy: 9.55 ± 0.58 U/g; pond: 8.83 ± 0.72 U/g), glucokinase (GK) (paddy: 4.09 ± 0.21 IU/g; pond: 3.44 ± 0.33 IU/g), glucose-6-phosphatase (G6Pase) (paddy: 85.71 ± 4.49 IU/g; pond: 79.12 ± 9.34 IU/g), and glucose-6-phosphate dehydrogenase (G6PDH) (paddy: 47.23 ± 3.22 U/g; pond: 42.31 ± 4.93 U/g) were significantly elevated in rice paddy-cultured fish compared to those in ponds. Conversely, phosphor-pyruvate kinase (PK) (paddy: 418.15 ± 31.89 U/g; pond: 570.16 ± 56.06 U/g) activity was markedly reduced in the paddy group. Hepatic glycogen content (paddy: 15.70 ± 0.98 ng/g; pond: 14.91 ± 1.24 ng/g) was also substantially higher in fish from paddy, although no significant differences in muscle glycogen content (paddy: 7.14 ± 0.59 ng/g; pond: 6.70 ± 0.52 ng/g) were observed between the two environments. In terms of nutritional composition, fish raised in paddy exhibited higher crude protein (paddy: 18.46 ± 0.47 g/100 g muscle; pond: 15.57 ± 0.25 g/100 g muscle) and crude ash (paddy: 1.19 ± 0.02 g/100 g muscle; pond: 0.97 ± 0.02 g/100 g muscle) than those in ponds, whereas the crude fat (paddy: 0.87 ± 0.04 g/100 g muscle; pond: 1.66 ± 0.04 g/100 g muscle) was notably lower in paddy fish. Furthermore, fish from rice paddies had a greater total content of monounsaturated fatty acids (MUFA) (paddy: 4.25 ± 0.24 g/100 g muscle; pond: 6.73 ± 0.27 g/100 g muscle), non-essential amino acids (NEAA) (paddy: 9.04 ± 0.3 g/100 g muscle; pond: 7.19 ± 0.21 g/100 g muscle), and delicious amino acids (DAA) (paddy: 7.11 ± 0.2 g/100 g muscle; pond: 5.45 ± 0.19 g/100 g muscle) compared to those from pond cultures. These findings suggest that rice-fish co-culture systems can yield healthier and more environmentally sustainable aquatic products by improving feed digestion and optimizing nutrient metabolism.
Collapse
Affiliation(s)
- Tao Yan
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Yun-Yi Xie
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Bo Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611731, China
| | - Xu Kuang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Qing-Zhi Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feng-Qi Zhao
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Qian-Dong Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Bin He
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611731, China
| |
Collapse
|
3
|
Xia Z, Liu Z, Liu Y, Cui W, Zheng D, Tao M, Zhou Y, Peng X. Differentiating Pond-Intensive, Paddy-Ecologically, and Free-Range Cultured Crayfish ( Procambarus clarkii) Using Stable Isotope and Multi-Element Analysis Coupled with Chemometrics. Foods 2024; 13:2947. [PMID: 39335876 PMCID: PMC11431733 DOI: 10.3390/foods13182947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The farming pattern of crayfish significantly impacts their quality, safety, and nutrition. Typically, green and ecologically friendly products command higher economic value and market competitiveness. Consequently, intensive farming methods are frequently employed in an attempt to replace these environmentally friendly products, leading to potential instances of commercial fraud. In this study, stable isotope and multi-element analysis were utilized in conjunction with multivariate modeling to differentiate between pond-intensive, paddy-ecologically, and free-range cultured crayfish. The four stable isotope ratios of carbon, nitrogen, hydrogen, and oxygen (δ13C, δ15N, δ2H, δ18O) and 20 elements from 88 crayfish samples and their feeds were determined for variance analysis and correlation analysis. To identify and differentiate three different farming pattern crayfish, unsupervised methods such as hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used, as well as supervised multivariate modeling, specifically partial least squares discriminant analysis (PLS-DA). The HCA and PCA exhibited limited effectiveness in classifying the farming pattern of crayfish, whereas the PLS-DA demonstrated a more robust performance with a predictive accuracy of 90.8%. Additionally, variables such as δ13C, δ15N, δ2H, Mn, and Co exhibited relatively higher contributions in the PLS-DA model, with a variable influence on projection (VIP) greater than 1. This study is the first attempt to use stable isotope and multi-element analysis to distinguish crayfish under three farming patterns. It holds promising potential as an effective strategy for crayfish authentication.
Collapse
Affiliation(s)
- Zhenzhen Xia
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Zhi Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenwen Cui
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Dan Zheng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Mingfang Tao
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Youxiang Zhou
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, China
| |
Collapse
|
4
|
Yang Q, Ai X, Dong J, Yang Y, Zhou S, Liu Y, Xu N. Elimination of Pendimethalin in Integrated Rice and Procambarus clarkii Breeding Models and Dietary Risk Assessments. Foods 2022; 11:foods11091300. [PMID: 35564023 PMCID: PMC9105123 DOI: 10.3390/foods11091300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated elimination of the herbicide pendimethalin using an integrated rice and Procambarus clarkii breeding model of indoor and outdoor (pond culture) exposure tests. The pendimethalin levels in 484 samples from the primary rice and P. clarkii integrated breeding areas in Hubei province were monitored, and dietary risk assessments of pendimethalin were calculated. Pendimethalin was quantified using high-performance liquid chromatography tandem mass spectrometry, and detection levels were linear in the range of 1.0 to 10.0 μg/L, and peak areas were positively correlated with concentration, with a correlation coefficient of 0.9996. Recoveries ranged from 86.9 to 103.5%, and the limit of quantitation was 2.5 × 10−4 μg/L in water, and 1 × 10−2 μg/kg in tissues, sediments, and waterweeds. The dissipation rate of pendimethalin in tissues and water followed first-order kinetics, with half-lives of 0.51–5.64 d. In 484 samples taken from aquaculture farms, pendimethalin was detected in 8.67% of the samples at levels in the range of 1.95 to 8.26 μg/kg in Hubei province from 2018 to 2020. The maximum residue limit of pendimethalin in P. clarkii has not been established in China, but our dietary risk assessments indicated that consumption of P. clarkii from integrated rice farms was acceptable.
Collapse
Affiliation(s)
- Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Q.Y.); (J.D.); (Y.Y.); (S.Z.); (Y.L.); (N.X.)
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Q.Y.); (J.D.); (Y.Y.); (S.Z.); (Y.L.); (N.X.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
- Correspondence:
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Q.Y.); (J.D.); (Y.Y.); (S.Z.); (Y.L.); (N.X.)
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Q.Y.); (J.D.); (Y.Y.); (S.Z.); (Y.L.); (N.X.)
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Q.Y.); (J.D.); (Y.Y.); (S.Z.); (Y.L.); (N.X.)
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Q.Y.); (J.D.); (Y.Y.); (S.Z.); (Y.L.); (N.X.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Q.Y.); (J.D.); (Y.Y.); (S.Z.); (Y.L.); (N.X.)
| |
Collapse
|