1
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2025; 55:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
2
|
Das S, Das A, Das N, Nath T, Langthasa M, Pandey P, Kumar V, Choure K, Kumar S, Pandey P. Harnessing the potential of microbial keratinases for bioconversion of keratin waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57478-57507. [PMID: 38985428 DOI: 10.1007/s11356-024-34233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The increasing global consumption of poultry meat has led to the generation of a vast quantity of feather keratin waste daily, posing significant environmental challenges due to improper disposal methods. A growing focus is on utilizing keratinous polymeric waste, amounting to millions of tons annually. Keratins are biochemically rigid, fibrous, recalcitrant, physiologically insoluble, and resistant to most common proteolytic enzymes. Microbial biodegradation of feather keratin provides a viable solution for augmenting feather waste's nutritional value while mitigating environmental contamination. This approach offers an alternative to traditional physical and chemical treatments. This review focuses on the recent findings and work trends in the field of keratin degradation by microorganisms (bacteria, actinomycetes, and fungi) via keratinolytic and proteolytic enzymes, as well as the limitations and challenges encountered due to the low thermal stability of keratinase, and degradation in the complex environmental conditions. Therefore, recent biotechnological interventions such as designing novel keratinase with high keratinolytic activity, thermostability, and binding affinity have been elaborated here. Enhancing protein structural rigidity through critical engineering approaches, such as rational design, has shown promise in improving the thermal stability of proteins. Concurrently, metagenomic annotation offers insights into the genetic foundations of keratin breakdown, primarily predicting metabolic potential and identifying probable keratinases. This may extend the understanding of microbial keratinolytic mechanisms in a complex community, recognizing the significance of synergistic interactions, which could be further utilized in optimizing industrial keratin degradation processes.
Collapse
Affiliation(s)
- Sandeep Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Ankita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Nandita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Tamanna Nath
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | | | - Prisha Pandey
- Department of Biotechnology, Royal Global University, Guwahati, 781035, Assam, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India, 248016
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, 485001, Madhya Pradesh, India
| | - Sanjeev Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
3
|
Zhou B, Guo Y, Xue Y, Ji X, Huang Y. Comprehensive insights into the mechanism of keratin degradation and exploitation of keratinase to enhance the bioaccessibility of soybean protein. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:177. [PMID: 37978558 PMCID: PMC10655438 DOI: 10.1186/s13068-023-02426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Keratin is a recalcitrant protein and can be decomposed in nature. However, the mechanism of keratin degradation is still not well understood. In this study, Bacillus sp. 8A6 can completely degrade the feather in 20 h, which is an efficient keratin degrader reported so far. Comprehensive transcriptome analysis continuously tracks the metabolism of Bacillus sp. 8A6 throughout its growth in feather medium. It reveals for the first time how the strain can acquire nutrients and energy in an oligotrophic feather medium for proliferation in the early stage. Then, the degradation of the outer lipid layer of feather can expose the internal keratin structure for disulfide bonds reduction by sulfite from the newly identified sulfite metabolic pathway, disulfide reductases and iron uptake. The resulting weakened keratin has been further proposedly de-assembled by the S9 protease and hydrolyzed by synergistic effects of the endo, exo and oligo-proteases from S1, S8, M3, M14, M20, M24, M42, M84 and T3 families. Finally, bioaccessible peptides and amino acids are generated and transported for strain growth. The keratinase has been applied for soybean hydrolysis, which generates 2234 peptides and 559.93 mg/L17 amino acids. Therefore, the keratinases, inducing from the poultry waste, have great potential to be further applied for producing bioaccessible peptides and amino acids for feed industry.
Collapse
Affiliation(s)
- Beiya Zhou
- College of Mathematical Sciences, Bohai University, Jinzhou, 121013, Liaoning, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Huizhou Institute of Green Energy and Advanced Materials, Huizhou, 516000, Guangdong, China
| | - Yandong Guo
- College of Mathematical Sciences, Bohai University, Jinzhou, 121013, Liaoning, China.
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
4
|
Coluccia M, Besaury L. Acidobacteria members harbour an abundant and diverse carbohydrate-active enzymes (cazyme) and secreted proteasome repertoire, key factors for potential efficient biomass degradation. Mol Genet Genomics 2023:10.1007/s00438-023-02045-x. [PMID: 37335345 DOI: 10.1007/s00438-023-02045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
The Acidobacteria phylum is a very abundant group (20-30% of microbial communities in soil ecosystems); however, little is known about these microorganisms and their ability to degrade the biomass and lignocellulose due to the difficulty of culturing them. We, therefore, bioinformatically studied the content of lignocellulolytic enzymes (total and predicted secreted enzymes) and secreted peptidases in an in silico library containing 41 Acidobacteria genomes. The results showed a high abundance and diversity of total and secreted Carbohydrate-Active enzymes (cazyme) families among the Acidobacteria compared to known previous degraders. Indeed, the relative abundance of cazymes in some genomes represented more than 6% of the gene coding proteins with at least 300 cazymes. The same observation was made with the predicted secreted peptidases with several families of secreted peptidases, which represented at least 1.5% of the gene coding proteins in several genomes. These results allowed us to highlight the lignocellulolytic potential of the Acidobacteria phylum in the degradation of lignocellulosic biomass, which could explain its high abundance in the environment.
Collapse
Affiliation(s)
- Marion Coluccia
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Ludovic Besaury
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| |
Collapse
|
5
|
Wen Y, Qiang J, Zhou G, Zhang X, Wang L, Shi Y. Characterization of redox and salinity-tolerant alkaline protease from Bacillus halotolerans strain DS5. Front Microbiol 2022; 13:935072. [PMID: 36060753 PMCID: PMC9434114 DOI: 10.3389/fmicb.2022.935072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus halotolerans DS5 was isolated and identified as a halophilic microbe according to 16S rRNA analysis and the physical and chemical indices of the strain. A new alkaline protease (designated as prot DS5) from Bacillus halotolerans DS5 was produced, purified, and characterized. After 12 h incubation in the medium with 1% dextrin, 0.5% NaCl, 2% soluble starch, and 1% yeast extract (pH 7.0), it could reach the maximum enzyme activity (279.74 U/ml). The prot DS5 was stable in the pH range of 6.0–12.0 and the temperature range of 40–60°C, with maximal hydrolytic activities at pH 9 and at 50°C. In the presence of Ca2+, Mn2+, Ba2+, Mg2+, and Fe3+, protease activity was enhanced. The prot DS5 was maintained highly stable in NaCl (up to 2.5 mol/L), reducing and oxidizing agents. The prot DS5 also exhibited compatibility in other detergent ingredients, such as non-ionic and anionic surfactants. These properties of prot DS5 make this enzyme suitable for various industrial applications (e.g., detergents and leather).
Collapse
|
6
|
Valorization of Livestock Keratin Waste: Application in Agricultural Fields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116681. [PMID: 35682267 PMCID: PMC9180014 DOI: 10.3390/ijerph19116681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
Livestock keratin waste is a rich source of protein. However, the unique structure of livestock keratin waste makes its valorization a great challenge. This paper reviews the main methods for the valorization of livestock keratin waste, which include chemical, biological, and other novel methods, and summarizes the main agricultural applications of keratin-based material. Livestock keratin waste is mainly used as animal feed and fertilizer. However, it has promising potential for biosorbents and in other fields. In the future, researchers should focus on the biological extraction and carbonization methods of processing and keratin-based biosorbents for the soil remediation of farmland.
Collapse
|
7
|
Naeem M, Manzoor S, Abid MUH, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A. Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. J Fungi (Basel) 2022; 8:109. [PMID: 35205863 PMCID: PMC8875690 DOI: 10.3390/jof8020109] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing world population, demand for industrialization has also increased to fulfill humans' living standards. Fungi are considered a source of essential constituents to produce the biocatalytic enzymes, including amylases, proteases, lipases, and cellulases that contain broad-spectrum industrial and emerging applications. The present review discussed the origin, nature, mechanism of action, emerging aspects of genetic engineering for designing novel proteases, genome editing of fungal strains through CRISPR technology, present challenges and future recommendations of fungal proteases. The emerging evidence revealed that fungal proteases show a protective role to many environmental exposures and discovered that an imbalance of protease inhibitors and proteases in the epithelial barriers leads to the protection of chronic eosinophilic airway inflammation. Moreover, mitoproteases recently were found to execute intense proteolytic processes that are crucial for mitochondrial integrity and homeostasis function, including mitochondrial biogenesis, protein synthesis, and apoptosis. The emerging evidence revealed that CRISPR/Cas9 technology had been successfully developed in various filamentous fungi and higher fungi for editing of specific genes. In addition to medical importance, fungal proteases are extensively used in different industries such as foods to prepare butter, fruits, juices, and cheese, and to increase their shelf life. It is concluded that hydrolysis of proteins in industries is one of the most significant applications of fungal enzymes that led to massive usage of proteomics.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050025, China;
| | - Saba Manzoor
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan;
| | | | | | - Mirza Asad
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot 51040, Pakistan;
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Dua Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University (BNU-HKBU) United International College, Zhuhai 519087, China
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|