1
|
Ogbezode JE, Ezealigo US, Bello A, Anye VC, Onwualu AP. A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles. DISCOVER NANO 2023; 18:125. [PMID: 37815643 PMCID: PMC10564704 DOI: 10.1186/s11671-023-03898-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023]
Abstract
The significance of green synthesized nanomaterials with a uniform shape, reduced sizes, superior mechanical capabilities, phase microstructure, magnetic behavior, and superior performance cannot be overemphasized. Iron oxide nanoparticles (IONPs) are found within the size range of 1-100 nm in nanomaterials and have a diverse range of applications in fields such as biomedicine, wastewater purification, and environmental remediation. Nevertheless, the understanding of their fundamental material composition, chemical reactions, toxicological properties, and research methodologies is constrained and extensively elucidated during their practical implementation. The importance of producing IONPs using advanced nanofabrication techniques that exhibit strong potential for disease therapy, microbial pathogen control, and elimination of cancer cells is underscored by the adoption of the green synthesis approach. These IONPs can serve as viable alternatives for soil remediation and the elimination of environmental contaminants. Therefore, this paper presents a comprehensive analysis of the research conducted on different types of IONPs and IONP composite-based materials. It examines the synthesis methods and characterization techniques employed in these studies and also addresses the obstacles encountered in prior investigations with comparable objectives. A green engineering strategy was proposed for the synthesis, characterization, and application of IONPs and their composites with reduced environmental impact. Additionally, the influence of their phase structure, magnetic properties, biocompatibility, toxicity, milling time, nanoparticle size, and shape was also discussed. The study proposes the use of biological and physicochemical methods as a more viable alternative nanofabrication strategy that can mitigate the limitations imposed by the conventional methods of IONP synthesis.
Collapse
Affiliation(s)
- Joseph Ekhebume Ogbezode
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria.
- Department of Mechanical Engineering, Edo State University Uzairue, Uzairue, Edo State, Nigeria.
| | - Ucheckukwu Stella Ezealigo
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
| | - Abdulhakeem Bello
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria.
- Centre for Cyber-Physical Food, Energy and Water System (CCP-FEWS), Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa.
- Department of Theoretical and Applied Physics, African University of Science and Technology, Abuja, Nigeria.
| | - Vitalis Chioh Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
| | - Azikiwe Peter Onwualu
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
| |
Collapse
|
2
|
Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine 2023; 18:5607-5623. [PMID: 37814664 PMCID: PMC10560484 DOI: 10.2147/ijn.s404394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 10/11/2023] Open
Abstract
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Collapse
Affiliation(s)
- Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tin Van Hyun
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University – Shuang Ho Hospital, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Yavuz M, Ütkür M, Kehribar EŞ, Yağız E, Sarıtaş EÜ, Şeker UÖŞ. Engineered Bacteria with Genetic Circuits Accumulating Nanomagnets as MRI Contrast Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200537. [PMID: 35567331 DOI: 10.1002/smll.202200537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The demand for highly efficient cancer diagnostic tools increases alongside the high cancer incidence nowadays. Moreover, there is an imperative need for novel cancer treatment therapies that lack the side effects of conventional treatment options. Developments in this aspect employ magnetic nanoparticles (MNPs) for biomedical applications due to their stability, biocompatibility, and magnetic properties. Certain organisms, including many bacteria, can synthesize magnetic nanocrystals, which help their spatial orientation and survival by sensing the earth's geomagnetic field. This work aims to convert Escherichia coli to accumulate magnetite, which can further be coupled with drug delivery modules. The authors design magnetite accumulating bacterial machines using genetic circuitries hiring Mms6 with iron-binding activity and essential in magnetite crystal formation. The work demonstrates that the combinatorial effect of Mms6 with ferroxidase, iron transporter protein, and material binding peptide enhances the paramagnetic behavior of the cells in magnetic resonance imaging (MRI) measurements. Cellular machines are also engineered to display Mms6 peptide on the cell surface via an autotransporter protein that shows augmented MRI performance. The findings are promising for endowing a probiotic bacterium, able to accumulate magnetite intracellularly or extracellularly, serving as a theranostics agent for cancer diagnostics via MRI scanning and hyperthermia treatment.
Collapse
Affiliation(s)
- Merve Yavuz
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Mustafa Ütkür
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey
| | - Ebru Şahin Kehribar
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Ecrin Yağız
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey
| | - Emine Ülkü Sarıtaş
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, 06800, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|