1
|
Meena UK, Maurya AK. Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus. Neuromolecular Med 2025; 27:11. [PMID: 39853472 DOI: 10.1007/s12017-025-08833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α. Herbal medicines have been widely used for managing various toxicological effects and disorders including hypoxia; however, the data on safety, efficacy and the molecular mechanisms that increase vulnerability or lethality against hypoxia are still lacking and urgently need to be investigated. The Current study aims to investigate how Bacopa monnieri extract (BME), specially CDRI-08 affects the hippocampus of mice subjected to conditions that simulate hypoxia. The pre and co-treatment of mice involved administrating BME (200 mg/kg BW) for 14 days, followed by exposure to CoCl2 (40 mg/kg BW). BME decreased the levels of reactive oxygen species (ROS) and lipid peroxidation, while it increased the Gamma-aminobutyric acid receptor subunit-ɑ1 (GABAAR-ɑ1) level as well as the activity of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Furthermore BME reduced the levels of HIF-1α and its downstream targets glucose transporter-1 (GLUT-1) and erythropoietin (EPO) in the DG, CA1, and CA3 regions of hippocampus. Additionally, results obtained from the open field, elevated zero maze and plus maze tests indicate that BME restores anxiety caused by hypoxia. Together, these findings suggested that BME mitigates the harmful effects of oxidative stress and altered hypoxia related signaling in hippocampus; and may provide a basis for its therapeutic use in the recovery from hypoxia-led anxiety.
Collapse
Affiliation(s)
- Upendra Kumar Meena
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Akhilendra Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
2
|
Xun X, Liu Y, Pan W, Tang L, Hu C, Ouyang H, Liu Q, Zeng H, Li D. Low frequency-repetitive transcranial magnetic stimulation combined with Xingnao Kaiqiao acupuncture improves post-stroke cognitive impairment and has better clinical efficacy. Psychogeriatrics 2025; 25:e13199. [PMID: 39462185 DOI: 10.1111/psyg.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Enhancing post-stroke cognitive impairment (PSCI) is a key aspect of prognosis for stroke patients. Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) is currently a widely utilised method for treating PSCI. With the increasing promotion of traditional Chinese medicine, Xingnao Kaiqiao (XNKQ) acupuncture has been progressively incorporated into clinical treatment. This paper observes the effect of LF-rTMS with XNKQ acupuncture on patients with PSCI. METHODS Totally, 192 patients with PSCI were consecutively recruited and treated either with LF-rTMS and XNKQ acupuncture (observation group) or LF-rTMS only (control group) for 4 weeks. The pre- and post-treatment Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores, P300 latency and amplitude, inflammatory factor levels were compared and clinical efficacy was assessed. RESULTS Both groups exhibited increased MMSE/MoCA scores, and P300 amplitude, and shortened P300 latency, and the observation group had higher scores and P300 amplitude, and shorter P300 latency than the control group. Both groups displayed decreased inflammatory factor levels (Tumour necrosis factor-α, interleukin (IL)-6, IL-10, IL-1β) after treatment, which were lower in the observation group than the control group. Inflammatory factor levels in PSCI patients were negatively interrelated with MMSE, MoCA score and P300 amplitude, and positively with P300 latency. The observation group showed an increased number of patients showing cured and significantly effective results, a decreased number of patients showing effective and invalid results, and an observably elevated total effective rate. CONCLUSION LF-rTMS with XNKQ acupuncture can improve cognitive function and reduce inflammatory immune response, and has better clinical efficacy in PSCI patients.
Collapse
Affiliation(s)
- Xiao Xun
- Department of Acupuncture and Moxibustion Massage Rehabilitation, Integrated Traditional Chinese and Western Medicine Second Hospital Affiliated with Hunan University of Chinese Medicine, Liuyang, China
| | - Yanhong Liu
- Department of Acupuncture and Moxibustion Massage Rehabilitation, Integrated Traditional Chinese and Western Medicine Second Hospital Affiliated with Hunan University of Chinese Medicine, Liuyang, China
| | - Weimin Pan
- Liling Traditional Chinese Medicine Hospital, Liling, China
| | - Lang Tang
- Department of Acupuncture and Moxibustion Massage Rehabilitation, Integrated Traditional Chinese and Western Medicine Second Hospital Affiliated with Hunan University of Chinese Medicine, Liuyang, China
| | - Changling Hu
- Department of Acupuncture and Moxibustion Massage Rehabilitation, Integrated Traditional Chinese and Western Medicine Second Hospital Affiliated with Hunan University of Chinese Medicine, Liuyang, China
| | - Hua Ouyang
- Department of Acupuncture and Moxibustion Massage Rehabilitation, Integrated Traditional Chinese and Western Medicine Second Hospital Affiliated with Hunan University of Chinese Medicine, Liuyang, China
| | - Qiu Liu
- Department of Acupuncture and Moxibustion Massage Rehabilitation, Integrated Traditional Chinese and Western Medicine Second Hospital Affiliated with Hunan University of Chinese Medicine, Liuyang, China
| | - Hongliang Zeng
- Department of Acupuncture and Moxibustion Massage Rehabilitation, Integrated Traditional Chinese and Western Medicine Second Hospital Affiliated with Hunan University of Chinese Medicine, Liuyang, China
| | - Dan Li
- Department of Acupuncture and Moxibustion Massage Rehabilitation, Integrated Traditional Chinese and Western Medicine Second Hospital Affiliated with Hunan University of Chinese Medicine, Liuyang, China
| |
Collapse
|
3
|
Guha T, Bhattacharya E, Dutta M, Dutta A, Dandapat M, Bose R, Biswas SM. Enhanced bacoside synthesis in Bacopa monnieri plants using seed exudates from Tamarindus indica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109287. [PMID: 39549384 DOI: 10.1016/j.plaphy.2024.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Diverse allelochemicals are released from different plant parts via leaching, exudation, volatilization, etc., which can induce either stimulatory or inhibitory effects depending on the target plant species. Very few reports provide details about allelopathic interaction through seed exudates. Since Tamarindus indica L. seed exudate (TSE) has been known to exhibit growth stimulatory effect on lettuce, radish, and sesame, in the present study we have evaluated its role in regulating the secondary metabolism of an over-exploited medicinal herb, Bacopa monnieri (L.) Pennel. The bacoside biosynthesis rate of B. monnieri is quite low in comparison to its increasingly high demands in the pharmaceutical industry. Currently, researches are aimed towards enhancing the biosynthesis of this secondary metabolite in planta by utilizing external stress factors. Presently, 7-day-old B. monnieri seedlings were treated with 1:16, 1:8, 1:4, 1:3, and 1:2 (seed weight: water) TSE. Maximum upregulation of secondary metabolite contents was found in the 1:4 (seed weight: water) TSE treatment set. This TSE treatment also enhanced H2O2 and salicylic acid production leading to the upregulation of the genes related to the MVA pathway (BmAACT, BmHMGR, BmMDD, BmSQS, and BmBAS) which are responsible for bacoside biosynthesis and 1.7-fold higher bacoside level was found in TSE treated set compared to control. LC-HRMS analysis of TSE confirmed the presence of alkaloid (lupanine), phenol (chlorogenic acid), and organic acid (mucic acid), which are identified as potential allelochemicals responsible for modulating the secondary metabolism of B. monnieri. Thus, this study highlights a sustainable approach towards enhancing bacoside production in planta.
Collapse
Affiliation(s)
- Titir Guha
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India; Department of Biology, Indian Institute of Science Education and Research, Tirupati, Srinivasapuram, Yerpedu Mandal, Tirupati, 517619, Andhra Pradesh, India.
| | - Ekta Bhattacharya
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Madhurima Dutta
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Anisha Dutta
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Moumita Dandapat
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Rahul Bose
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Suparna Mandal Biswas
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India.
| |
Collapse
|
4
|
Valotto Neto LJ, Reverete de Araujo M, Moretti Junior RC, Mendes Machado N, Joshi RK, dos Santos Buglio D, Barbalho Lamas C, Direito R, Fornari Laurindo L, Tanaka M, Barbalho SM. Investigating the Neuroprotective and Cognitive-Enhancing Effects of Bacopa monnieri: A Systematic Review Focused on Inflammation, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis. Antioxidants (Basel) 2024; 13:393. [PMID: 38671841 PMCID: PMC11047749 DOI: 10.3390/antiox13040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The aging of the global population has increased the prevalence of neurodegenerative conditions. Bacopa monnieri (BM), an herb with active compounds, such as bacosides A and B, betulinic acid, loliolide, asiatic acid, and quercetin, demonstrates the potential for brain health. Limited research has been conducted on the therapeutic applications of BM in neurodegenerative conditions. This systematic review aims to project BM's beneficial role in brain disorders. BM has anti-apoptotic and antioxidant actions and can repair damaged neurons, stimulate kinase activity, restore synaptic function, improve nerve transmission, and increase neuroprotection. The included twenty-two clinical trials demonstrated that BM can reduce Nuclear Factor-κB phosphorylation, improve emotional function, cognitive functions, anhedonia, hyperactivity, sleep routine, depression, attention deficit, learning problems, memory retention, impulsivity, and psychiatric problems. Moreover, BM can reduce the levels of pro-inflammatory biomarkers and oxidative stress. Here, we highlight that BM provides notable therapeutic benefits and can serve as a complementary approach for the care of patients with neurodegenerative conditions associated with brain disorders. This review adds to the growing interest in natural products and their potential therapeutic applications by improving our understanding of the mechanisms underlying cognitive function and neurodegeneration and informing the development of new therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Luiz José Valotto Neto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Matheus Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Renato Cesar Moretti Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Nathalia Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Rakesh Kumar Joshi
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Daiane dos Santos Buglio
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Medical School of Marilia (FAMEMA), Marília 17519-030, SP, Brazil;
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
5
|
Kumar S, Singh N, Lahane V, Tripathi V, Yadav AK, Shukla RK. Methyl jasmonate inducible UGT79A18 is a novel glycosyltransferase involved in the bacoside biosynthetic pathway in Bacopa monnieri. PHYSIOLOGIA PLANTARUM 2024; 176:e14260. [PMID: 38511471 DOI: 10.1111/ppl.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Bacosides are dammarane-type triterpenoidal saponins in Bacopa monnieri and have various pharmacological applications. All the bacosides are diversified from two isomers, i.e., jujubogenin and pseudojujubogenin. The biosynthetic pathway of bacoside is not well elucidated. In the present study, we characterized a UDP-glycosyltransferase, UGT79A18, involved in the glycosylation of pseudojujubogenin. UGT79A18 shows higher expression in response to 5 h of wounding, and 3 h of MeJA treatment. The recombinant UGT79A18 shows in vitro activity against a wide range of flavonoids and triterpenes and has a substrate preference for protopanaxadiol, a dammarane-type triterpene. Secondary metabolite analysis of overexpression and knockdown lines of UGT79A18 in B. monnieri identify bacopasaponin D, bacopaside II, bacopaside N2 and pseudojujubogenin glucosyl rhamnoside as the major bacosides that were differentially accumulated. In the overexpression lines of UGT79A18, we found 1.7-fold enhanced bacopaside II, 8-fold enhanced bacopasaponin D, 3-fold enhanced pseudojujubogenin glucosyl rhamnoside, and 1.6-fold enhanced bacopaside N2 content in comparison with vector control plant, whereas in the knockdown lines of UGT79A18, we found 1.4-fold reduction in bacopaside II content, 3-fold reduction in the bacopasaponin D content, 2-fold reduction in the pseudojujubogenin glucosyl rhamnoside content, and 1.5-fold reduction in bacopaside N2 content in comparison with vector control. These results suggest that UGT79A18 is a significant UDP glycosyltransferase involved in glycosylating pseudojujubogenin and enhancing the pseudojujubogenin-derived bacosides.
Collapse
Affiliation(s)
- Sunil Kumar
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Neeti Singh
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vaibhavi Lahane
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Vineeta Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Botany Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Akhilesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Shukla
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Mursaliyeva VK, Sarsenbek BT, Dzhakibaeva GT, Mukhanov TM, Mammadov R. Total Content of Saponins, Phenols and Flavonoids and Antioxidant and Antimicrobial Activity of In Vitro Culture of Allochrusa gypsophiloides (Regel) Schischk Compared to Wild Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3521. [PMID: 37895985 PMCID: PMC10609880 DOI: 10.3390/plants12203521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Allochrusa gypsophiloides is a rare Central Asian species, a super-producer of triterpene saponins with pharmacological and technical value. In this work, a comparative evaluation of the in vitro culture of adventitious roots (ARs), in vitro adventitious microshoots (ASs), natural roots and aboveground parts of wild plants from Kazakhstan to define the total saponin (TS), phenol (TP) and flavonoid (TF) content, as well as antioxidant (AOA) and antimicrobial activity, is presented for the first time. In the AR culture, growth index (GI), TS, TP and TF were evaluated on days 25, 45 and 60 of cultivation on ½ MS medium without (control) and with auxin application. It was found out that TS and TF were higher in the in vitro AR culture. The amount of TP and TF are higher in the aerial part of vegetative plants with maximum AOA. The concentration of the extract required to inhibit 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical formation (ICO50) in extracts from natural material negatively correlated with TS, TP, TF and in the in vitro AR culture with TF. Control extracts from the in vitro AR culture with high TS levels showed growth-inhibitory activity against S. thermophillus, S. cerevisiae and C. albicans. The influence shares of medium composition factor, cultivation duration factor and their interaction with GI, TS, TP and TF were determined. The in vitro AR culture is promising for obtaining triterpene saponins TSR with high antibacterial and antifungal activity, and the in vitro ASs culture-for shoot multiplication with antioxidant properties.
Collapse
Affiliation(s)
| | - Balaussa T. Sarsenbek
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (B.T.S.); (T.M.M.)
| | | | - Tlek M. Mukhanov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (B.T.S.); (T.M.M.)
| | - Ramazan Mammadov
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla University, Mugla 48000, Turkey;
- Department of Biology and Ecology, Faculty of Nature and Technology, University of Odlar Yurdu, AZ1072 Baku, Azerbaijan
| |
Collapse
|
7
|
Otari SS, Devkar SP, Patel SB, Ghane SG. Micropropagation and elicited production of triterpenoid saponin glycosides and stigmasterol via precursor and elicitor feeding in Bacopa floribunda (R.Br.) Wettst.-A potential nootropic herb. FRONTIERS IN PLANT SCIENCE 2023; 14:1096842. [PMID: 36798714 PMCID: PMC9927201 DOI: 10.3389/fpls.2023.1096842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Bacopa floribunda (Family: Plantaginaceae) is used in folklore medicines for the management of cognitive dysfunction. It has nootropic, antiaging, anti-inflammatory, anti-cholinesterase, and antioxidant properties. We developed an efficient and reproducible protocol for in vitro propagation of B. floribunda using the nodal explants. We assessed the effects of Murashige and Skoog (MS) medium fortified with various plant growth regulatory substances (PGRs), a precursor, and elicitors and their optimal combinations on regeneration and production of total saponins, triterpenoid saponin glycosides (bacoside A3, bacopaside X, bacopaside II, and bacosaponin C), and stigmasterol content in in vitro grown biomass of B. floribunda. The growth of the shoots and roots was stimulated by MS + 2.0 mg/l BAP + 2.0 mg/l KIN and MS + 0.5 mg/l IAA + 0.5 mg/l IBA + 1.0 mg/l NAA, respectively. After 10 weeks of acclimatization, plantlets of B. floribunda had a survival rate of 95%. The highest total saponin content (35.95 ± 0.022 mg DE/g DW) was noted in the treatment of MS + 2.0 mg/l BAP + 1.5 μM SQ. Similarly, total triterpenoid saponin glycosides and stigmasterol were found maximum in biomass derived from MS + 2.0 mg/l BAP + 1.5 μM SQ and MS + 2.0 mg/l BAP, respectively. At the same treatments, bacoside A3 (1.01 ± 0.195 mg/g DW), bacopaside II (43.62 ± 0.657 mg/g DW), bacopaside X (1.23 ± 0.570 mg/g DW), bacosaponin C (0.19 ± 0.195 mg/g DW), and stigmasterol (7.69 ± 0.102 mg/g DW) were reported. The present findings will help to highlight B. floribunda as a potent memory-enhancing herb, and in future also, it could be a potential substitute to B. monnieri. The current work is the first to describe the micropropagation and the elicited production of bioactive metabolites from the in vitro grown biomass of B. floribunda. In addition, further research is needed on production of bioactives, their pharmacological effects, and the elicited production using callus, cell suspension, and hairy root cultures.
Collapse
|
8
|
Murthy HN, Joseph KS, Paek KY, Park SY. Anthraquinone Production from Cell and Organ Cultures of Rubia Species: An Overview. Metabolites 2022; 13:39. [PMID: 36676964 PMCID: PMC9861034 DOI: 10.3390/metabo13010039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The Rubia genus includes major groups of medicinal plants such as Rubia cordifolia, Rubia tinctorum, and Rubia akane. They contain anthraquinones (AQs), particularly alizarin and purpurin, which have pharmacological effects that are anti-inflammatory, antioxidant, anticancer, hemostatic, antibacterial, and more. Alizarin and purpurin have been utilized as natural dyes for cotton, silk, and wool fabrics since the dawn of time. These substances have been used in the cosmetics and food industries to color products. The amount of AQs in different Rubia species is minimal. In order to produce these compounds, researchers have established cell and organ cultures. Investigations have been conducted into numerous chemical and physical parameters that affect the biomass and accumulation of secondary metabolites in a cell, callus, hairy root, and adventitious root suspension cultures. This article offers numerous techniques and approaches used to produce biomass and secondary metabolites from the Rubia species. Additionally, it has been emphasized that cells can be grown in bioreactor cultures to produce AQs.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad 580003, India
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|