1
|
Liu Y, Shao Y, Wang L, Lu W, Li S, Xu D, Fu YV. Inactivation of porcine epidemic diarrhea virus with electron beam irradiation under cold chain conditions. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 27:102715. [PMID: 35694201 PMCID: PMC9169434 DOI: 10.1016/j.eti.2022.102715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The many instances of COVID-19 outbreaks suggest that cold chains are a possible route for the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, owing to the low temperatures of cold chains, which are normally below 0 °C, there are limited options for virus inactivation. Here, high-energy electron beam (E-beam) irradiation was used to inactivate porcine epidemic diarrhea virus (PEDV) under simulated cold chain conditions. This coronavirus was used as a surrogate for SARS-CoV-2. The possible mechanism by which high-energy E-beam irradiation inactivates PEDV was also explored. An irradiation dose of 10 kGy reduced the PEDV infectious viral titer by 1.68-1.76 log10TCID 50 / 100 μ L in the cold chain environment, suggesting that greater than 98.1% of PEDV was inactivated. E-beam irradiation at 5-30 kGy damaged the viral genomic RNA with an efficiency of 46.25%-92.11%. The integrity of the viral capsid was disrupted at 20 kGy. The rapid and effective inactivation of PEDV at temperatures below freezing indicates high-energy E-beam irradiation as a promising technology for disinfecting SARS-CoV-2 in cold chain logistics to limit the transmission of COVID-19.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Shao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Diandou Xu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|