1
|
Ibrahim RM, Kamoun EA, Badawi NM, El-Moslamy SH, Kh M, Salim SA. Cutting-edge biomaterials for advanced biomedical uses: self-gelation of l-arginine-loaded chitosan/PVA/vanillin hydrogel for accelerating topical wound healing and skin regeneration. RSC Adv 2024; 14:31126-31142. [PMID: 39351417 PMCID: PMC11441373 DOI: 10.1039/d4ra04430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The self-gelation utilizes natural vanillin as a primary component of vanilla bean extract, and as a crosslinking agent for entangling chitosan-PVA hydrogels. This involves a Schiff-base reaction, where amino group of chitosan (CH) interacts with aldehyde group of vanillin (Van). The optimized formula of formed hydrogels is chosen based on achieving a well-balanced combination of self-healing capability, mechanical strength, sustained release profile, and hydrophilic tendency. The prepared hydrogel is thoroughly characterized using SEM and FTIR analyses, swelling ratio, hydrolytic rate assessment, and in vitro drug release profiling. CH-PVA-Van hydrogels demonstrate controlled drug release that is sustained for over 7 days. Furthermore, antimicrobial tests indicate strong activity of CH-PVA-Van-l-arginine against Gram-positive bacteria, compared to tested yeast or Gram-negative bacteria using multiple human pathogens. Subsequently, in vitro biological assays are conducted to confirm the effectiveness of the prepared hydrogel in promoting wound healing and bone regeneration through cytotoxicity assay and wound scratch assay. The composite hydrogels achieved 95% wound healing after 24 hours, attributed to the release of NO from the loaded l-Arg and its essential role in the wound healing process. Consequently, CH-PVA-Van hydrogels emerge as a promising system for loading l-arginine and exhibiting potential for biomedical applications with antibacterial efficacy.
Collapse
Affiliation(s)
- Rabab M Ibrahim
- Polymeric and Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Elbadawy A Kamoun
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia +201283320302
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab City 21934 Alexandria Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Shahira H El-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab City 21934 Alexandria Egypt
| | - Mahmoud Kh
- Department of Pharmacognosy, National Research Center (NRC) Dokki 12622 Giza Egypt
| | - Samar A Salim
- Polymeric and Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| |
Collapse
|
2
|
Kim DY, Kim M, Sung JS, Koduru JR, Nile SH, Syed A, Bahkali AH, Seth CS, Ghodake GS. Extracellular synthesis of silver nanoparticle using yeast extracts: antibacterial and seed priming applicationss. Appl Microbiol Biotechnol 2024; 108:150. [PMID: 38240838 DOI: 10.1007/s00253-023-12920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 01/23/2024]
Abstract
The evolution and rapid spread of multidrug-resistant (MDR) bacterial pathogens have become a major concern for human health and demand the development of alternative antimicrobial agents to combat this emergent threat. Conventional intracellular methods for producing metal nanoparticles (NPs) using whole-cell microorganisms have limitations, including binding of NPs to cellular components, potential product loss, and environmental contamination. In contrast, this study introduces a green, extracellular, and sustainable methodology for the bio-materialization of silver NPs (AgNPs) using renewable resource cell-free yeast extract. These extracts serve as a sustainable, biogenic route for both reducing the metal precursor and stabilizing the surface of AgNPs. This method offers several advantages such as cost-effectiveness, environment-friendliness, ease of synthesis, and scalability. HR-TEM imaging of the biosynthesized AgNPs revealed an isotropic growth route, resulting in an average size of about ~ 18 nm and shapes ranging from spherical to oval. Further characterization by FTIR and XPS results revealed various functional groups, including carboxyl, hydroxyl, and amide contribute to enhanced colloidal stability. AgNPs exhibited potent antibacterial activity against tested MDR strains, showing particularly high efficacy against Gram-negative bacteria. These findings suggest their potential role in developing alternative treatments to address the growing threat of antimicrobial resistance. Additionally, seed priming experiments demonstrated that pre-sowing treatment with AgNPs improves both the germination rate and survival of Sorghum jowar and Zea mays seedlings. KEY POINTS: •Yeast extract enables efficient, cost-effective, and eco-friendly AgNP synthesis. •Biosynthesized AgNPs showed strong antibacterial activity against MDR bacteria. •AgNPs boost seed germination and protect against seed-borne diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedical Campus, 32 Dongguk-Ro, Ilsanadong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedical Campus, 32 Dongguk-Ro, Ilsanadong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Shivraj Hariram Nile
- Division of Food and Nutrition, DBT-National Agri-Food Biotechnology Institute, Mohali, Sahibzada Ajit Singh Nagar, 140308, Punjab, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
3
|
El-Moslamy SH, Abd-Elhamid AI, Fawal GE. Large-scale production of myco-fabricated ZnO/MnO nanocomposite using endophytic Colonstachys rosea with its antimicrobial efficacy against human pathogens. Sci Rep 2024; 14:935. [PMID: 38195769 PMCID: PMC10776836 DOI: 10.1038/s41598-024-51398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
In this study, a ZnO/MnO nanocomposite was myco-fabricated using the isolated endophytic Clonostachys rosea strain EG99 as the nano-factory. The extract of strain EG99, a reducing/capping agent, was successfully titrated with equal quantities of Zn(NO3)2·6H2O and Mn(NO3)2·6H2O (precursors) in a single step to fabricate the rod-shaped ZnO/MnO nanocomposite of size 6.22 nm. The ZnO/MnO nanocomposite was myco-fabricated in 20 min, and the results were validated at 350 and 400 nm using UV-Vis spectroscopy. In a 7-L bioreactor, an industrial biotechnological approach was used to scale up the biomass of this strain, EG99, and the yield of the myco-fabricated ZnO/MnO nanocomposite. A controlled fed-batch fermentation system with a specific nitrogen/carbon ratio and an identical feeding schedule was used in this production process. Higher yields were obtained by adopting a controlled fed-batch fermentation approach in a 7-L bioreactor with a regular feeding schedule using a nitrogen/carbon ratio of 1:200. Overall, the fed-batch produced 89.2 g/l of biomass at its maximum, 2.44 times more than the batch's 36.51 g/l output. Furthermore, the fed-batch's maximum ZnO/MnO nanocomposite yield was 79.81 g/l, a noteworthy 14.5-fold increase over the batch's yield of 5.52 g/l. Finally, we designed an innovative approach to manage the growth of the endophytic strain EG99 using a controlled fed-batch fermentation mode, supporting the rapid, cheap and eco-friendly myco-fabrication of ZnO/MnO nanocomposite. At a dose of 210 µg/ml, the tested myco-fabricated ZnO/MnO nanocomposite exhibited the maximum antibacterial activity against Staphylococcus aureus (98.31 ± 0.8%), Escherichia coli (96.70 ± 3.29%), and Candida albicans (95.72 ± 0.95%). At the same dose, Staphylococcus aureus biofilm was eradicated in 48 h; however, Escherichia coli and Candida albicans biofilms needed 72 and 96 h, respectively. Our myco-fabricated ZnO/MnO nanocomposite showed strong and highly selective antagonistic effects against a variety of multidrug-resistant human pathogens. Therefore, in upcoming generations of antibiotics, it might be employed as a nano-antibiotic.
Collapse
Affiliation(s)
- Shahira H El-Moslamy
- Department of Bioprocess Development (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City, Alexandria, 21934, Egypt.
| | - Ahmed Ibrahim Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, 21934, Egypt
| | - Gomaa El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, 21934, Egypt
| |
Collapse
|
4
|
Salim SA, Badawi NM, El-Moslamy SH, Kamoun EA, Daihom BA. Novel long-acting brimonidine tartrate loaded-PCL/PVP nanofibers for versatile biomedical applications: fabrication, characterization and antimicrobial evaluation. RSC Adv 2023; 13:14943-14957. [PMID: 37200698 PMCID: PMC10186146 DOI: 10.1039/d3ra02244g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The global state of antibiotic resistance highlights the necessity for new drugs that can treat a wide range of microbial infections. Drug repurposing has several advantages, including lower costs and improved safety compared to developing a new compound. The aim of the current study is to evaluate the repurposed antimicrobial activity of Brimonidine tartrate (BT), a well-known antiglaucoma drug, and to potentiate its antimicrobial effect by using electrospun nanofibrous scaffolds. BT-loaded nanofibers were fabricated in different drug concentrations (1.5, 3, 6, and 9%) via the electrospinning technique using two biopolymers (PCL and PVP). Then, the prepared nanofibers were characterized by SEM, XRD, FTIR, swelling ratio, and in vitro drug release. Afterward, the antimicrobial activities of the prepared nanofibers were investigated in vitro using different methods against several human pathogens and compared to the free BT. The results showed that all nanofibers were prepared successfully with a smooth surface. The diameters of nanofibers were reduced after loading of BT compared to the unloaded ones. In addition, scaffolds showed controlled-drug release profiles that were maintained for more than 7 days. The in vitro antimicrobial assessments revealed good activities for all scaffolds against most of the investigated human pathogens, particularly the one prepared with 9% BT which showed superiority in the antimicrobial effect over other scaffolds. To conclude, our findings proved the capability of nanofibers in loading BT and improving its repurposed antimicrobial efficacy. Therefore, it could be a promising carrier for BT to be used in combating numerous human pathogens.
Collapse
Affiliation(s)
- Samar A Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Shahira H El-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21934 Egypt
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
- Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Baher A Daihom
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University Cairo Egypt
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin 78712 USA
| |
Collapse
|
5
|
Aasy NKA, El-Lakany SA, Masanga PM, Kamoun EA, EL-Moslamy SH, Abu-Serie M, Aly RG, Elgindy NA. Concurrent Tissue Engineering for Wound Healing in Diabetic Rats Utilizing Dual Actions of Green Synthesized CuO NPs Prepared from Two Plants Grown in Egypt. Int J Nanomedicine 2023; 18:1927-1947. [PMID: 37064292 PMCID: PMC10103783 DOI: 10.2147/ijn.s397045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023] Open
Abstract
Purpose Diabetes mellitus is among the disrupting factors of orchestrated events in wound healing. This necessitates the urge for tailored medications, which are continually offered by nano-sized materials. Herein, we present greenly synthesized copper oxide nanoparticles (CuO NPs), obtained from either Punica granatum L. (PG) or Pisidium guajava L. (GV) extract, to function as potent bactericidal and fungicidal materials that promote regeneration and healing of the targeted diabetic wounded tissues. Methods PG or GV plant extracts were compared as source of reducing agents for CuO NPs synthesis process. The yield and photocatalytic degradation potential were compared. NPs obtained from the superior extract, PG, were characterized using particles size, zeta potential, XRD, TEM, SEM, and EDX. The antimicrobial effects were evaluated on multidrug-resistant human pathogens and then the percentage biofilm inhibitory concentration was determined. The cytotoxicity and wound scratch study were conducted on a normal human skin cell line. In-vivo wound healing activity in diabetic rats was assessed along with histopathological and immunohistochemical examination of CD45 and α-SMA. Results The greenly synthesized CuO NPs are spherical in shape having a diameter of 233nm. CuO NPs (250µg/mL) acted as promising biocontrol agent against a variety of multidrug-resistant human pathogens. They significantly exhibited 29.460±0.811% healing of the scratched wound compared to only 2.001±0.155% for the control. Wound healing experiments revealed the safety of a low CuO NPs concentration in a diabetic animal model as well as on human normal skin fibroblast cell line. The treated group with a dose of 2mg/cm2 showed superior results with a WC50 value of 7.2 days, and 92% wound contraction after 13-days. Immunohistochemical investigation of the same group demonstrated well-established fibrous tissue (5.7±3.7/HPF), and an amplified granulation tissue of recently developed blood vessels (70±1.5/HPF). Conclusion Green synthesized CuO NPs could overcome drug resistance and promote wound healing process effectively.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sarah A El-Lakany
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shahira H EL-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department (MBD), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-city), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nazik A Elgindy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|