1
|
Broeckaert N, Longin H, Hendrix H, De Smet J, Franz-Wachtel M, Maček B, van Noort V, Lavigne R. Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa. MICROLIFE 2024; 5:uqae018. [PMID: 39464744 PMCID: PMC11512479 DOI: 10.1093/femsml/uqae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 10/29/2024]
Abstract
Bacteria employ a myriad of regulatory mechanisms to adapt to the continuously changing environments that they face. They can, for example, use post-translational modifications, such as Nε-lysine acetylation, to alter enzyme activity. Although a lot of progress has been made, the extent and role of lysine acetylation in many bacterial strains remains uncharted. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) in combination with the immunoprecipitation of acetylated peptides and LC-MS/MS to measure the first Pseudomonas aeruginosa PAO1 acetylome, revealing 1076 unique acetylation sites in 508 proteins. Next, we assessed interstrain acetylome differences within P. aeruginosa by comparing our PAO1 acetylome with two publicly available PA14 acetylomes, and postulate that the overall acetylation patterns are not driven by strain-specific factors. In addition, the comparison of the P. aeruginosa acetylome to 30 other bacterial acetylomes revealed that a high percentage of transcription related proteins are acetylated in the majority of bacterial species. This conservation could help prioritize the characterization of functional consequences of individual acetylation sites.
Collapse
Affiliation(s)
- Nand Broeckaert
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hannelore Longin
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Institute of Cell Biology, University of Tübingen, Auf d. Morgenstelle 15, D-72076 Tübingen, Germany
| | - Boris Maček
- Proteome Center Tuebingen, Institute of Cell Biology, University of Tübingen, Auf d. Morgenstelle 15, D-72076 Tübingen, Germany
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| |
Collapse
|
2
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. Influence of N ε-Lysine Acetylation on the Formation of Protein Aggregates and Antibiotic Persistence in E. coli. Molecules 2024; 29:383. [PMID: 38257296 PMCID: PMC10819833 DOI: 10.3390/molecules29020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Numerous studies indicate that reversible Nε-lysine acetylation in bacteria may play a key role in the regulation of metabolic processes, transcription and translation, biofilm formation, virulence, and drug resistance. Using appropriate mutant strains deficient in non-enzymatic acetylation and enzymatic acetylation or deacetylation pathways, we investigated the influence of protein acetylation on cell viability, protein aggregation, and persister formation in Escherichia coli. Lysine acetylation was found to increase protein aggregation and cell viability under the late stationary phase. Moreover, increased lysine acetylation stimulated the formation of persisters. These results suggest that acetylation-dependent aggregation may improve the survival of bacteria under adverse conditions (such as the late stationary phase) and during antibiotic treatment. Further experiments revealed that acetylation-favorable conditions may increase persister formation in Klebsiella pneumoniae clinical isolate. However, the exact mechanisms underlying the relationship between acetylation and persistence in this pathogen remain to be elucidated.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.S.-S.); (D.K.-W.)
| |
Collapse
|
3
|
Zhang LQ, Shen YL, Ye BC, Zhou Y. Acetylation of K188 and K192 inhibits the DNA-binding ability of NarL to regulate Salmonella virulence. Appl Environ Microbiol 2023; 89:e0068523. [PMID: 37732772 PMCID: PMC10617396 DOI: 10.1128/aem.00685-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
Salmonella infection significantly increases nitrate levels in the intestine, immune cells, and immune organs of the host, and it can exploit nitrate as an electron acceptor to enhance its growth. In the presence of nitrate or nitrite, NarL, a regulatory protein of the Nar two-component system, is activated and regulates a number of genes involved in nitrate metabolism. However, research on NarL at the post-translational level is limited. In this study, we demonstrate that the DNA-binding sites K188 and 192 of NarL can be acetylated by bacterial metabolite acetyl phosphate and that the degree of acetylation has a considerable influence on the regulatory function of NarL. Specifically, acetylation of NarL negatively regulates the transcription of narG, narK, and napF, which affects the utilization of nitrate in Salmonella. Besides, both cell and mouse models show that acetylated K188 and K192 result in attenuated replication in RAW 264.7 cells, as well as impaired virulence in mouse model. Together, this research identifies a novel NarL acetylation mechanism that regulates Salmonella virulence, providing a new insight and target for salmonellosis treatment.IMPORTANCESalmonella is an important intracellular pathogen that can cause limited gastroenteritis and self-limiting gastroenteritis in immunocompetent humans. Nitrate, the highest oxidation state form of nitrogen, is critical in the formation of systemic infection in Salmonella. It functions as a signaling molecule that influences Salmonella chemotaxis, in addition to acting as a reduced external electron acceptor for Salmonella anaerobic respiration. NarL is an essential regulatory protein involved in nitrate metabolism in Salmonella, and comprehending its regulatory mechanism is necessary. Previous research has linked NarL phosphorylation to the formation of its dimer, which is required for NarL to perform its regulatory functions. Our research demonstrated that acetylation also affects the regulatory function of NarL. We found that acetylation affects Salmonella pathogenicity by weakening the ability of NarL to bind to the target sequence, further refining the mechanism of the anaerobic nitrate respiration pathway.
Collapse
Affiliation(s)
- Liu-Qing Zhang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-Lin Shen
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|