1
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
2
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhang Y, Song Z, Zhao H, Chen H, Zhao B. Integrative physiological, transcriptomic and metabolomic analysis reveals how the roots of two ornamental Hydrangea macrophylla cultivars cope with lead (Pb) toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168615. [PMID: 37984650 DOI: 10.1016/j.scitotenv.2023.168615] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Lead (Pb) soil contamination has caused serious ecological and environmental issues. Hydrangea macrophylla is a potential Pb-contaminated soil remediation plant, however, their Pb stress defense mechanism is largely unknown. Here, the physiology, transcriptomic and metabolome of two H. macrophylla cultivars (ML, Pb-sensitive cultivar; JC, Pb-resistant cultivar) under Pb stress were investigated. The results demonstrated that JC performed superiorly, with activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were 1.25, 2.84, and 1.67 times higher than those of ML after Pb treatment, respectively, and the amount of soluble sugar in JC increased by 231.34 % compared with that in ML. The electrical conductivity (EC) value of the root exudates of JC was 43.71 % lower than that of ML under Pb stress. The non-targeted metabolomics analysis revealed 193 metabolites grouped into nine categories. Pb stress-induced differential expression of the 37 metabolites, among which the major metabolites up-regulated in ML were organic acids, while in JC, these were carbohydrates, fatty acids, organic acids and lipids. The transcriptomic analysis revealed that Pb exposure induced 1075 and 1314 differentially expressed genes (DEGs) in JC and ML, respectively. According to the functional annotation results, hub genes were primarily enriched in carbohydrate metabolism, root growth, and plant resistance to external stresses. A conjoint analysis of the two omics indicated that the cutin, suberine and wax biosynthesis pathway in JC played an essential role in Pb detoxification. These findings clarify the resistance mechanism of H. macrophylla to Pb stress and open up a new avenue for breeding H. macrophylla Pb-resistant cultivars.
Collapse
Affiliation(s)
- Yuyu Zhang
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Ziyi Song
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Huiqi Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Huan Chen
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Bing Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Qu M, Cheng X, Xu Q, Zeng Z, Zheng M, Mei Y, Zhao J, Liu G. Fate of glyphosate in lakes with varying trophic levels and its modification by root exudates of submerged macrophytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132757. [PMID: 37865072 DOI: 10.1016/j.jhazmat.2023.132757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
Accelerated eutrophication in lakes reduces the number of submerged macrophytes and alters the residues of glyphosate and its degradation products. However, the effects of submerged macrophytes on the fate of glyphosate remain unclear. We investigated eight lakes with varying trophic levels along the middle and lower reaches of the Yangtze River in China, of which five lakes contained either glyphosate or aminomethylphosphate (AMPA). Glyphosate and AMPA residues were significantly positively correlated with the trophic levels of lakes (P < 0.01). In lakes, glyphosate is degraded through the AMPA and sarcosine pathways. Eight shared glyphosate-degrading enzymes and genes were observed in different lake sediments, corresponding to 44 degrading microorganisms. Glyphosate concentrations in sediments were significantly higher in lakes with lower abundances of soxA (sarcosine oxidase) and soxB (sarcosine oxidase) (P < 0.05). In the presence of submerged macrophytes, oxalic and malonic acids secreted by the roots of submerged macrophytes increased the abundance of glyphosate-degrading microorganisms containing soxA or soxB (P < 0.05). These results revealed that a decrease in the number of submerged macrophytes in eutrophic lakes may inhibit glyphosate degradation via the sarcosine pathway, leading to a decrease in glyphosate degradation and an increase in glyphosate residues.
Collapse
Affiliation(s)
- Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiang Xu
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
| | - Ziming Zeng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianwei Zhao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Chen B, Xu J, Lu H, Zhu L. Remediation of benzo[a]pyrene contaminated soils by moderate chemical oxidation coupled with microbial degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161801. [PMID: 36739024 DOI: 10.1016/j.scitotenv.2023.161801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical oxidation is a promising technology for the remediation of organics-contaminated soils. However, residual oxidants and transformation products have adverse effects on microbial activities. This work aimed at moderate chemical oxidation coupled with microbial degradation (MOMD) for the removal of benzo[a]pyrene (BaP) by optimizing the type and dosage of oxidants. Potassium permanganate (KMnO4), Fe2+ + sodium persulfate (Fe2+ + PS), Fenton's reagent (Fe2+ + H2O2), and hydrogen peroxide (H2O2) were compared for BaP removal from loam clay and sandy soils. Overall, the removal efficiency of BaP by a moderate dose of oxidant coupled indigenous microorganism was slightly lower than that by a high dose of relevant oxidant. The contributions of microbial degradation to the total removal of BaP varied for different oxidants and soils. The removal efficiency of BaP from loam clay sandy soil by a moderate dose of KMnO4 (25 mmol/L) was 94.3 ± 1.1 % and 92.5 ± 1.8 %, respectively, which were both relatively higher than those under other conditions. The indirect carbon footprint yielded by the moderate dose of oxidants was 39.2-72.8 % less than that by the complete oxidation. A moderate dose of oxidants also reduced disturbances to soil pH and OC. The microbial communities after MOMD treatment were dominated by Burkholderiaceae, Enterobacteriaceae, Alicyclobacillaceae, and Oxalobacteraceae. These dominant microorganisms promoted the removal of BaP through the expression of polycyclic aromatic hydrocarbon-ring hydroxylated dioxygenase gene. Compared with complete chemical oxidation, MOMD is also a promising technique with the utilization of indigenous microorganism for remediating BaP-contaminated soils.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Agriculture & Forest University, Lin'an, Zhejiang 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria. Sci Rep 2023; 13:4050. [PMID: 36899103 PMCID: PMC10006420 DOI: 10.1038/s41598-023-30915-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Low phosphorus (P) availability in soils is a major challenge for sustainable food production, as most soil P is often unavailable for plant uptake and effective strategies to access this P are limited. Certain soil occurring bacteria and root exudate-derived compounds that release P are in combination promising tools to develop applications that increase phosphorus use efficiency in crops. Here, we studied the ability of root exudate compounds (galactinol, threonine, and 4-hydroxybutyric acid) induced under low P conditions to stimulate the ability of bacteria to solubilize P. Galactinol, threonine, and 4-hydroxybutyric acid were incubated with the P solubilizing bacterial strains Enterobacter cloacae, Pseudomonas pseudoalcaligenes, and Bacillus thuringiensis under either inorganic (calcium phosphate) or organic (phytin) forms of plant-unavailable P. Overall, we found that the addition of individual root exudate compounds did not support bacterial growth rates. However, root exudates supplemented to the different bacterial appeared to enhance P solubilizing activity and overall P availability. Threonine and 4-hydroxybutyric acid induced P solubilization in all three bacterial strains. Subsequent exogenous application of threonine to soils improved the root growth of corn, enhanced nitrogen and P concentrations in roots and increased available levels of potassium, calcium and magnesium in soils. Thus, it appears that threonine might promote the bacterial solubilization and plant-uptake of a variety of nutrients. Altogether, these findings expand on the function of exuded specialized compounds and propose alternative approaches to unlock existing phosphorus reservoirs of P in crop lands.
Collapse
|