1
|
Santos LM, Rodrigues DM, Alves BVB, Kalil MA, Azevedo V, Barh D, Meyer R, Duran N, Tasic L, Portela RW. Activity of biogenic silver nanoparticles in planktonic and biofilm-associated Corynebacterium pseudotuberculosis. PeerJ 2024; 12:e16751. [PMID: 38406288 PMCID: PMC10885795 DOI: 10.7717/peerj.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024] Open
Abstract
Corynebacterium pseudotuberculosis is a gram-positive bacterium and is the etiologic agent of caseous lymphadenitis (CL) in small ruminants. This disease is characterized by the development of encapsulated granulomas in visceral and superficial lymph nodes, and its clinical treatment is refractory to antibiotic therapy. An important virulence factor of the Corynebacterium genus is the ability to produce biofilm; however, little is known about the characteristics of the biofilm produced by C. pseudotuberculosis and its resistance to antimicrobials. Silver nanoparticles (AgNPs) are considered as promising antimicrobial agents, and are known to have several advantages, such as a broad-spectrum activity, low resistance induction potential, and antibiofilm activity. Therefore, we evaluate herein the activity of AgNPs in C. pseudotuberculosis, through the determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity, and visualization of AgNP-treated and AgNP-untreated biofilm through scanning electron microscopy. The AgNPs were able to completely inhibit bacterial growth and inactivate C. pseudotuberculosis at concentrations ranging from 0.08 to 0.312 mg/mL. The AgNPs reduced the formation of biofilm in reference strains and clinical isolates of C. pseudotuberculosis, with interference values greater than 80% at a concentration of 4 mg/mL, controlling the change between the planktonic and biofilm-associated forms, and preventing fixation and colonization. Scanning electron microscopy images showed a significant disruptive activity of AgNP on the consolidated biofilms. The results of this study demonstrate the potential of AgNPs as an effective therapeutic agent against CL.
Collapse
Affiliation(s)
- Laerte Marlon Santos
- Instituto de Ciencias da Saude, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | | | | | - Vasco Azevedo
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debmalya Barh
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, West Bengal, India
| | - Roberto Meyer
- Instituto de Ciencias da Saude, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Nelson Duran
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil
| | - Ljubica Tasic
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil
| | | |
Collapse
|
2
|
Rodríguez-Domínguez MC, Montes-de-Oca-Jiménez R, Vázquez-Chagoyán JC, Rivadeneira-Barreiro PE, Zambrano-Rodríguez PC, Ruiz-Riva-Palacio ME, Gutiérrez-Castillo ADC, de-Castro-Soares S, Vieyra-Reyes P, Arteaga-Troncoso G. Bioinformatic Approach of B and T Cell Epitopes of PLD and CP40 Proteins of Corynebacterium pseudotuberculosis ovis Mexican Isolate 2J-L towards a Peptide-Based Vaccine. Int J Mol Sci 2023; 25:270. [PMID: 38203441 PMCID: PMC10778833 DOI: 10.3390/ijms25010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
Mapping B and T cell epitopes constitutes an important action for peptide vaccine design. PLD and CP40 virulence factors of Corynebacterium pseudotuberculosis biovar ovis, a causal agent of Caseous Lymphadenitis, have been evaluated in a murine model as good candidates for vaccine development. Therefore, the goal of this work was to in silico analyze B and T cell epitopes of the PLD and CP40 proteins of a Mexican isolate of Corynebacterium pseudotuberculosis ovis. The Immune Epitope Data Base and Resource website was employed to predict the linear and conformational B-cell, T CD4+, and T CD8+ epitopes of PLD and CP40 proteins of Corynebacterium pseudotuberculosis ovis Mexican strain 2J-L. Fifty B cell epitopes for PLD 2J-L and forty-seven for CP40 2J-L were estimated. In addition, T CD4+ and CD8+ cell epitopes were predicted for PLD 2J-L (MHC I:16 epitopes, MHC II:10 epitopes) and CP40 2J-L (MHC I: 15 epitopes, MHC II: 13 epitopes). This study provides epitopes, paying particular attention to sequences selected by different predictor programs and overlap sequences as B and T cell epitopes. PLD 2J-L and CP40 2J-L protein epitopes may aid in the design of a promising peptide-based vaccine against Caseous Lymphadenitis in Mexico.
Collapse
Affiliation(s)
- Maria Carla Rodríguez-Domínguez
- Research and Advanced Studies in Animal Health Center, Faculty of Veterinary Medicine and Zootechnics, Autonomy University of the State of Mexico, Km 15.5 Toluca Pan-American Highway Atlacomulco, Toluca C.P. 50200, State of Mexico, Mexico; (M.C.R.-D.); (J.C.V.-C.); (A.d.C.G.-C.); (P.V.-R.)
| | - Roberto Montes-de-Oca-Jiménez
- Research and Advanced Studies in Animal Health Center, Faculty of Veterinary Medicine and Zootechnics, Autonomy University of the State of Mexico, Km 15.5 Toluca Pan-American Highway Atlacomulco, Toluca C.P. 50200, State of Mexico, Mexico; (M.C.R.-D.); (J.C.V.-C.); (A.d.C.G.-C.); (P.V.-R.)
- Sor Juana Inés de la Cruz School, Autonomy University of the State of Mexico- AMECAMECA, Amecameca de Juarez C.P. 56900, State of Mexico, Mexico;
| | - Juan Carlos Vázquez-Chagoyán
- Research and Advanced Studies in Animal Health Center, Faculty of Veterinary Medicine and Zootechnics, Autonomy University of the State of Mexico, Km 15.5 Toluca Pan-American Highway Atlacomulco, Toluca C.P. 50200, State of Mexico, Mexico; (M.C.R.-D.); (J.C.V.-C.); (A.d.C.G.-C.); (P.V.-R.)
| | - Pilar Eliana Rivadeneira-Barreiro
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, Technical University of Manabí, Urbina Avenue, Portoviejo C.P. 130105, Portoviejo, Ecuador; (P.E.R.-B.); (P.C.Z.-R.)
| | - Pablo Cleomenes Zambrano-Rodríguez
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, Technical University of Manabí, Urbina Avenue, Portoviejo C.P. 130105, Portoviejo, Ecuador; (P.E.R.-B.); (P.C.Z.-R.)
| | - Martha Elba Ruiz-Riva-Palacio
- Sor Juana Inés de la Cruz School, Autonomy University of the State of Mexico- AMECAMECA, Amecameca de Juarez C.P. 56900, State of Mexico, Mexico;
| | - Adriana del Carmen Gutiérrez-Castillo
- Research and Advanced Studies in Animal Health Center, Faculty of Veterinary Medicine and Zootechnics, Autonomy University of the State of Mexico, Km 15.5 Toluca Pan-American Highway Atlacomulco, Toluca C.P. 50200, State of Mexico, Mexico; (M.C.R.-D.); (J.C.V.-C.); (A.d.C.G.-C.); (P.V.-R.)
| | - Siomar de-Castro-Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Av. Frei Paulino, 30-Nossa Sra. da Abadia, Uberaba C.P. 38025-180, Minas Gerais, Brazil;
| | - Patricia Vieyra-Reyes
- Research and Advanced Studies in Animal Health Center, Faculty of Veterinary Medicine and Zootechnics, Autonomy University of the State of Mexico, Km 15.5 Toluca Pan-American Highway Atlacomulco, Toluca C.P. 50200, State of Mexico, Mexico; (M.C.R.-D.); (J.C.V.-C.); (A.d.C.G.-C.); (P.V.-R.)
| | - Gabriel Arteaga-Troncoso
- Department of Cellular Biology and Development, National Institute of Perinatology, Lomas de Chapultepec IV Secc, Miguel Hidalgo, Mexico City C.P. 11000, Mexico;
- Military School of Health Officers, University of the Mexican Army and Air Force, SEDENA, Mexico City C.P. 11650, Mexico
| |
Collapse
|
3
|
Nicoleti JL, Braga ES, Stanisic D, Jadranin M, Façanha DAE, Barral TD, Hanna SA, Azevedo V, Meyer R, Tasic L, Portela RW. A serum NMR metabolomic analysis of the Corynebacterium pseudotuberculosis infection in goats. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12595-0. [PMID: 37219572 DOI: 10.1007/s00253-023-12595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Caseous lymphadenitis (CLA), an infectious disease caused by Corynebacterium pseudotuberculosis in small ruminants, is highly prevalent worldwide. Economic losses have already been associated with the disease, and little is known about the host-pathogen relationship associated with the disease. The present study aimed to perform a metabolomic study of the C. pseudotuberculosis infection in goats. Serum samples were collected from a herd of 173 goats. The animals were classified as controls (not infected), asymptomatic (seropositives but without detectable CLA clinical signs), and symptomatic (seropositive animals presenting CLA lesions), according to microbiological isolation and immunodiagnosis. The serum samples were analyzed using nuclear magnetic resonance (1H-NMR), nuclear Overhauser effect spectroscopy (NOESY), and Carr-Purcell-Meiboom-Gill (CPMG) sequences. The NMR data were analyzed using chemometrics, and principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were performed to discover specific biomarkers responsible for discrimination between the groups. A high dissemination of the infection by C. pseudotuberculosis was observed, being 74.57% asymptomatic and 11.56% symptomatic. In the evaluation of 62 serum samples by NMR, the techniques were satisfactory in the discrimination of the groups, being also complementary and mutually confirming, demonstrating possible biomarkers for the infection by the bacterium. Twenty metabolites of interest were identified by NOESY and 29 by CPMG, such as tryptophan, polyunsaturated fatty acids, formic acid, NAD+, and 3-hydroxybutyrate, opening promising possibilities for the use of these results in new therapeutic, immunodiagnosis, and immunoprophylactic tools, as well as for studies of the immune response against C. pseudotuberculosis. KEY POINTS: • Sixty-two samples from healthy, CLA asymptomatic, and symptomatic goats were screened • Twenty metabolites of interest were identified by NOESY and 29 by CPMG • 1H-NMR NOESY and CPMG were complementary and mutually confirming.
Collapse
Affiliation(s)
- Jorge Luis Nicoleti
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Erik Sobrinho Braga
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Danijela Stanisic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Milka Jadranin
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Serbia
| | - Débora Andréa Evangelista Façanha
- Institute of Rural Development, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Ceará State, 62790-000, Brazil
| | - Thiago Doria Barral
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Samira Abdallah Hanna
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Roberto Meyer
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Ricardo Wagner Portela
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil.
| |
Collapse
|
4
|
Evaluation of the Association of Recombinant Proteins NanH and PknG from Corynebacterium pseudotuberculosis Using Different Adjuvants as a Recombinant Vaccine in Mice. Vaccines (Basel) 2023; 11:vaccines11030519. [PMID: 36992103 DOI: 10.3390/vaccines11030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Caseous lymphadenitis is a chronic contagious disease that causes economic losses worldwide. Treatments are ineffective, thus demonstrating the importance of vaccination. In this study, rNanH and rPknG proteins from Corynebacterium pseudotuberculosis were associated with saponin or aluminum hydroxide adjuvants. Three experimental groups (10 animals each) were immunized with sterile 0.9% saline solution (G1), rNanH + rPknG + Saponin (G2), rNanH + rPknG + Al(OH)3 (G3). The mice received two vaccine doses 21 days apart. Animals were challenged 21 days after the last immunization and evaluated for 50 days, with endpoint criteria applied when needed. The total IgG production levels of the experimental groups increased significantly on day 42 when compared to the control (p < 0.05). When tested against rNanH, G2 had a better rate of anti-rNanH antibodies compared to G3. In the anti-rPknG ELISA, the levels of total IgG, IgG1, and IgG2a antibodies were higher in G2. The vaccines generated partial protection, with 40% of the animals surviving the challenge. The association of recombinant NanH and PknG proteins led to promising protection rates in mice, and although using different adjuvants did not interfere with the survival rate, it influenced the immune response generated by the vaccine formulations.
Collapse
|