1
|
Liu J, Li Y, Xu X, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Multiplexed engineering of cytochrome P450 enzymes for promoting terpenoid synthesis in Saccharomyces cerevisiae cell factories: A review. Biotechnol Adv 2025; 81:108560. [PMID: 40068711 DOI: 10.1016/j.biotechadv.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Terpenoids, also known as isoprenoids, represent the largest and most structurally diverse family of natural products, and their biosynthesis is closely related to cytochrome P450 enzymes (P450s). Given the limitations of direct extraction from natural resources, such as low productivity and environmental concerns, heterologous expression of P450s in microbial cell factories has emerged as a promising, efficient, and sustainable strategy for terpenoid production. The yeast expression system is a preferred selection for terpenoid synthesis because of its inner membrane system, which is required for eukaryotic P450 expression, and the inherent mevalonate pathway providing precursors for terpenoid synthesis. In this review, we discuss the advanced strategies used to enhance the local enzyme concentration and catalytic properties of P450s in Saccharomyces cerevisiae, with a focus on recent developments in metabolic and protein engineering. Expression enhancement and subcellular compartmentalization are specifically employed to increase the local enzyme concentration, whereas cofactor, redox partner, and enzyme engineering are utilized to improve the catalytic efficiency and substrate specificity of P450s. Subsequently, we discuss the application of P450s for the pathway engineering of terpenoid synthesis and whole-cell biotransformation, which are profitable for the industrial application of P450s in S. cerevisiae chassis. Finally, we explore the potential of using computational and artificial intelligence technologies to rationally design and construct high-performance cell factories, which offer promising pathways for future terpenoid biosynthesis.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Santos AKM, dos Santos BA, Farias JR, de Morais SV, Vasconcelos CC, Guerra RNM, Rodrigues-Filho E, Lopes AJO, Cantanhede Filho AJ. Effect of Mn(II) and Co(II) on Anti- Candida Metabolite Production by Aspergillus sp. an Endophyte Isolated from Dizygostemon riparius (Plantaginaceae). Pharmaceuticals (Basel) 2024; 17:1678. [PMID: 39770520 PMCID: PMC11677262 DOI: 10.3390/ph17121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: This study evaluates the effect of Mn(II) and Co(II) ions on the production of anti-Candida metabolites by the endophytic fungus Aspergillus sp., isolated from Dizygostemon riparius. The objective was to identify metal-induced secondary metabolites with antifungal potential against drug-resistant Candida species. Methods: Aspergillus sp. was cultivated in Czapek agar supplemented with MnCl₂ (400 µM) or CoCl₂ (200 µM). Metabolite profiles were analyzed using UHPLC-DAD and LC-ESI-HRMS, followed by structural elucidation via NMR. Antifungal and biofilm inhibition activities were tested against Candida albicans and Candida parapsilosis. Toxicity was assessed using Tenebrio molitor larvae. Results: Key metabolites, including pyrophen, penicillquei B, and fonsecinone B, demonstrated antifungal activity with MIC values of 4.37-280.61 µg/mL. Fonsecinone B exhibited superior biofilm inhibition, surpassing fluconazole in reducing biofilm biomass and viability. In vivo assays showed low toxicity, with survival rates above 80% at 2× MIC/kg. Conclusions: Mn(II) and Co(II) significantly modulated the production of antifungal metabolites in Aspergillus sp. Fonsecinone B emerged as a promising candidate for antifungal therapy due to its potent activity and low toxicity. These findings support further investigation into the therapeutic potential of metal-induced fungal metabolites for combating drug-resistant Candida infections.
Collapse
Affiliation(s)
- Anne Karoline Maiorana Santos
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | - Bianca Araújo dos Santos
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | - Josivan Regis Farias
- Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Sebastião Vieira de Morais
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | - Cleydlenne Costa Vasconcelos
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | | | | | - Alberto Jorge Oliveira Lopes
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | - Antônio José Cantanhede Filho
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| |
Collapse
|
3
|
Song W, Sun M, Lu H, Wang S, Wang R, Shang X, Feng T. Variations in Key Aroma Compounds and Aroma Profiles in Yellow and White Cultivars of Flammulina filiformis Based on Gas Chromatography-Mass Spectrometry-Olfactometry, Aroma Recombination, and Omission Experiments Coupled with Odor Threshold Concentrations. Foods 2024; 13:684. [PMID: 38472798 DOI: 10.3390/foods13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Flammulina filiformis (F. filiformis) is called the 'benefiting intelligence' mushroom. There is a notable difference between a yellow cultivar (with a robust aroma) and a white mutant cultivar (with a high yield) of F. filiformis. A thorough analysis of aroma differences is essential to improve the aroma of high-yield strains. This study employed a combination of gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and aroma extract dilution analysis (AEDA) to analyze the variations in aroma compounds. Then, the contribution of the odorants was determined using flavor dilution (FD) factors and odor activity values (OAVs). Aroma omission and recombination experiments were used to identify the key odorants. A total of 16 key aroma compounds were characterized in F. filiformis, along with four eight-carbon volatiles (3-octanone, 3-octanol, octanal, and 1-octen-3-ol). Finally, the dominant aroma characteristic was "sweet" for the yellow strain, while it was "green" for the white strain. More research is required to investigate the enzymes and corresponding genes that regulate the synthesis of aroma compounds in F. filiformis for future breeding programs.
Collapse
Affiliation(s)
- Wei Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huan Lu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shengyou Wang
- Institute of Edible Fungi, Sanming Academy of Agricultural Sciences, Sanming 365000, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Ruijuan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
4
|
Yang H, Yu F, Qian Z, Huang T, Peng T, Hu Z. Cytochrome P450 for environmental remediation: catalytic mechanism, engineering strategies and future prospects. World J Microbiol Biotechnol 2023; 40:33. [PMID: 38057619 DOI: 10.1007/s11274-023-03823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
Environmental pollution is a global concern. Various organic compounds are released into the environment through wastewater, waste gas, and waste residue, ultimately accumulating in the environment and the food chain. This poses a significant threat to both human health and ecology. Currently, a growing body of research has demonstrated that microorganisms employ their Cytochrome P450 (CYP450) system for biodegradation, offering a crucial approach for eliminating these pollutants in environmental remediation. CYP450, a ubiquitous catalyst in nature, includes a vast array of family members distributed widely across various organisms, including bacteria, fungi, and mammals. These enzymes participate in the metabolism of diverse organic compounds. Furthermore, the rapid advancements in enzyme and protein engineering have led to increased utilization of engineered CYP450s in environmental remediation, enhancing their efficiency in pollutant removal. This article presents an overview of the current understanding of various members of the CYP450 superfamily involved in transforming organic pollutants and the engineering of biodegrading CYP450s. Additionally, it explores the catalytic mechanisms, current practical applications of CYP450-based systems, their potential applications, and the prospects in bioremediation.
Collapse
Affiliation(s)
- Haichen Yang
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
- Guangdong Research Center of Offshore Environmental Pollution Control Engineering, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Ebrecht AC, Mofokeng TM, Hollmann F, Smit MS, Opperman DJ. Lactones from Unspecific Peroxygenase-Catalyzed In-Chain Hydroxylation of Saturated Fatty Acids. Org Lett 2023; 25:4990-4995. [PMID: 37389482 PMCID: PMC10353034 DOI: 10.1021/acs.orglett.3c01601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 07/01/2023]
Abstract
γ- and δ-lactones are valuable flavor and fragrance compounds. Their synthesis depends on the availability of suitable hydroxy fatty acid precursors. Three short unspecific peroxygenases were identified that selectively hydroxylate the C4 and C5 positions of C8-C12 fatty acids to yield after lactonization the corresponding γ- and δ-lactones. A preference for C4 over C5 hydroxylation gave γ-lactones as the major products. Overoxidation of the hydroxy fatty acids was addressed via the reduction of the resulting oxo acids using an alcohol dehydrogenase in a bienzymatic cascade reaction.
Collapse
Affiliation(s)
- Ana C. Ebrecht
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Thato M. Mofokeng
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Martha S. Smit
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Diederik J. Opperman
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|