1
|
Bavadi M, Zhu Z, Zhang B. Evaluation of surfactant-aided polycyclic aromatic hydrocarbon biodegradation by molecular docking and molecular dynamic simulation in the marine environment. CHEMOSPHERE 2024; 358:142171. [PMID: 38714247 DOI: 10.1016/j.chemosphere.2024.142171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Marine oil spills directly cause polycyclic aromatic hydrocarbons (PAHs) pollution and affect marine organisms due to their toxic property. Chemical and bio-based dispersants composed of surfactants and solvents are considered effective oil spill-treating agents. Dispersants enhance oil biodegradation in the marine environment by rapidly increasing their solubility in the water column. However, the effect of dispersants, especially surfactants, on PAHs degradation by enzymes produced by microorganisms has not been studied at the molecular level. The role of the cytochrome P450 (CYP) enzyme in converting contaminants into reactive metabolites during the biodegradation process has been evidenced, but the activity in the presence of surfactants is still ambiguous. Thus, this study focused on the evaluation of the impact of chemical and bio-surfactants (i.e., Tween 80 (TWE) and Surfactin (SUC)) on the biodegradation of naphthalene (NAP), chrysene (CHR), and pyrene (PYR), the representative components of PAHs, with CYP enzyme from microalgae Parachlorella kessleri using molecular docking and molecular dynamics (MD) simulation. The molecular docking analysis revealed that PAHs bound to residues at the CYP active site through hydrophobic interactions for biodegradation. The MD simulation showed that the surfactant addition changed the enzyme conformation in the CYP-PAH complexes to provide more interactions between the enzyme and PAHs. This led to an increase in the enzyme's capability to degrade PAHs. Binding free energy (ΔGBind) calculations confirmed that surfactant treatment could enhance PAHs degradation by the enzyme. The SUC gave a better result on NAP and PYR biodegradation based on ΔGBind, while TWE facilitated the biodegradation of CHR. The research outputs could greatly facilitate evaluating the behaviors of oil spill-treating agents and oil spill response operations in the marine environment.
Collapse
Affiliation(s)
- Masoumeh Bavadi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Zhiwen Zhu
- Oceans Science, Fisheries and Oceans Canada, Ottawa, ON, K1A 0E6, Canada
| | - Baiyu Zhang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
2
|
Zhu M, Zhang H, Cui W, Su Y, Sun S, Zhao C, Liu Q. Performance evaluation of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa and its effect on marine oil-spill remediation. Arch Microbiol 2024; 206:183. [PMID: 38502272 DOI: 10.1007/s00203-024-03903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.
Collapse
Affiliation(s)
- Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Wu Cui
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China.
| |
Collapse
|