1
|
Akram F, Fatima T, Shabbir I, Haq IU, Ibrar R, Mukhtar H. Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors. Mol Biotechnol 2025; 67:817-833. [PMID: 38461181 DOI: 10.1007/s12033-024-01108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Wang QY, Liu XJ, Hou YH, Wang JZ, Lin MZ, Yang QZ. Characterization of heat- and alkali-resistant feruloyl esterase from Humicola insolens and application in the production of high-strength kraft straws. Int J Biol Macromol 2024; 283:137742. [PMID: 39551298 DOI: 10.1016/j.ijbiomac.2024.137742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The application of feruloyl esterase (FAE) in biobleaching can effectively hydrolyze the feruloyl ester bond between hemicellulose and lignin, thereby partially disrupting the dense structure of the fiber, reducing the use of chemical reagents, and obtaining high-performance pulp fibers. Here, we successfully expressed the thermostable alkaline feruloyl esterase from Humicola insolens (H. insolens) in Pichia pastoris GS115, with an enzyme activity yield of 2.36 ± 0.21 U/mL. The highest activity of FAE for the hydrolysis of ethyl ferulate was observed at pH 7.5 and 70 °C. It retained about 56 % of its maximum activity in the pH range of 11.0. After being incubated at 50-55 °C for 1 h, it retained 70.05 % of its maximum activity. The addition of bio-enzyme pretreatment before chemical bleaching can reduce chemical reagents by 20 %, result in a 10.64 % reduction in kappa value, and increase the delignification rate of the pulp by 6.36 %. In addition, the surface of the enzyme-treated pulp showed rougher broom-like fiber filaments, and the viscosity of the enzyme-pretreated pulp (ECP) before chemical treatment increased by 131.51 % compared to the chemically treated pulp (CP), further indicating that the enzyme-pretreated pulp had higher pulp strength.
Collapse
Affiliation(s)
- Qin-Yu Wang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China
| | - Xiao-Jun Liu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China
| | - Yun-Hua Hou
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China.
| | - Jing-Zhen Wang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China
| | - Ming-Zhen Lin
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China
| | - Qin-Zheng Yang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China.
| |
Collapse
|
3
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
4
|
Sharma G, Singh V, Raheja Y, Chadha BS. Unlocking the potential of feruloyl esterase from Myceliophthora verrucosa: a key player in efficient conversion of biorefinery-relevant pretreated rice straw. 3 Biotech 2024; 14:168. [PMID: 38828098 PMCID: PMC11139844 DOI: 10.1007/s13205-024-04013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The lignocellulolytic accessory enzyme, Feruloyl esterase C (FE_5DR), encoded in the genome of thermotolerant Myceliophthora verrucosa was successfully cloned and heterologously expressed in Pichia pastoris. The expressed FE_5DR was purified using UNOsphere™ Q anion exchange chromatography column, exhibiting a homogeneous band of ~ 39 kDa. Its optimum temperature was determined to be 60 °C, with an optimal pH of 6.0. Additionally, the enzyme activity of FE_5DR was significantly enhanced by preincubation in a buffer containing Mg2+, Cu2+ and Ca2 metal ions. Enzyme kinetic parameters, computed from double reciprocal Lineweaver-Burk plots, yielded observed Vmax and Km values of 0.758 U/mg and 0.439 mM, respectively. Furthermore, the potential of custom-made cocktails comprising FE_5DR and benchmark cellulase derived from the developed mutant strain of Aspergillus allahabadii MAN 40, as well as the biorefinery-relevant lignocellulolytic enzyme Cellic CTec 3, resulted in improved saccharification of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw when compared to benchmark MAN 40 and Cellic CTec 3. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04013-7.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | | |
Collapse
|
5
|
Barreiro C, Albillos SM, García-Estrada C. Penicillium chrysogenum: Beyond the penicillin. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:143-221. [PMID: 38763527 DOI: 10.1016/bs.aambs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.
Collapse
Affiliation(s)
- Carlos Barreiro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica y Biología Molecular, Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain; Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| |
Collapse
|
6
|
Kosalková K, Barreiro C, Sánchez-Orejas IC, Cueto L, García-Estrada C. Biotechnological Fungal Platforms for the Production of Biosynthetic Cannabinoids. J Fungi (Basel) 2023; 9:jof9020234. [PMID: 36836348 PMCID: PMC9963667 DOI: 10.3390/jof9020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cannabinoids are bioactive meroterpenoids comprising prenylated polyketide molecules that can modulate a wide range of physiological processes. Cannabinoids have been shown to possess various medical/therapeutic effects, such as anti-convulsive, anti-anxiety, anti-psychotic, antinausea, and anti-microbial properties. The increasing interest in their beneficial effects and application as clinically useful drugs has promoted the development of heterologous biosynthetic platforms for the industrial production of these compounds. This approach can help circumvent the drawbacks associated with extraction from naturally occurring plants or chemical synthesis. In this review, we provide an overview of the fungal platforms developed by genetic engineering for the biosynthetic production of cannabinoids. Different yeast species, such as Komagataella phaffii (formerly P. pastoris) and Saccharomyces cerevisiae, have been genetically modified to include the cannabinoid biosynthetic pathway and to improve metabolic fluxes in order to increase cannabinoid titers. In addition, we engineered the filamentous fungus Penicillium chrysogenum for the first time as a host microorganism for the production of Δ9-tetrahydrocannabinolic acid from intermediates (cannabigerolic acid and olivetolic acid), thereby showing the potential of filamentous fungi as alternative platforms for cannabinoid biosynthesis upon optimization.
Collapse
Affiliation(s)
- Katarina Kosalková
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Campus de Vegazana, Universidad de León, 24007 León, Spain
| | | | - Laura Cueto
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
- Departamento de Ciencias Biomédicas, Campus de Vegazana, Universidad de León, 24007 León, Spain
- Correspondence: ; Tel.: +34-987-293-693
| |
Collapse
|