1
|
Preisner F, Behnisch R, Schwehr V, Godel T, Schwarz D, Foesleitner O, Bäumer P, Heiland S, Bendszus M, Kronlage M. Quantitative MR-Neurography at 3.0T: Inter-Scanner Reproducibility. Front Neurosci 2022; 16:817316. [PMID: 35250457 PMCID: PMC8888927 DOI: 10.3389/fnins.2022.817316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Quantitative MR-neurography (MRN) is increasingly applied, however, the impact of the MR-scanner on the derived parameters is unknown. Here, we used different 3.0T MR scanners and applied comparable MR-sequences in order to quantify the inter-scanner reproducibility of various MRN parameters of the sciatic nerve. Methods Ten healthy volunteers were prospectively examined at three different 3.0T MR scanners and underwent MRN of their sciatic nerve using comparable imaging protocols including diffusion tensor imaging (DTI) and T2 relaxometry. Subsequently, inter-scanner agreement was assessed for seven different parameters by calculating the intraclass correlation coefficients (ICCs) and the standard error of measurement (SEM). Results Assessment of inter-scanner reliability revealed good to excellent agreement for T2 (ICC: 0.846) and the quantitative DTI parameters, such as fractional anisotropy (FA) (ICC: 0.876), whereas moderate agreement was observed for proton spin density (PD) (ICC: 0.51). Analysis of variance identified significant inter-scanner differences for several parameters, such as FA (p < 0.001; p = 0.02), T2 (p < 0.01) and PD (p = 0.02; p < 0.01; p = 0.02). Calculated SEM values were mostly within the range of one standard deviation of the absolute mean values, for example 0.033 for FA, 4.12 ms for T2 and 27.8 for PD. Conclusion This study quantifies the measurement imprecision for peripheral nerve DTI and T2 relaxometry, which is associated with the use of different MR scanners. The here presented values may serve as an orientation of the possible scanner-associated fluctuations of MRN biomarkers, which can occur under similar conditions.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Véronique Schwehr
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Godel
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olivia Foesleitner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Moritz Kronlage,
| |
Collapse
|
2
|
Irimia A, Van Horn JD. Mapping the rest of the human connectome: Atlasing the spinal cord and peripheral nervous system. Neuroimage 2021; 225:117478. [PMID: 33160086 PMCID: PMC8485987 DOI: 10.1016/j.neuroimage.2020.117478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of diffusion, structural, and functional neuroimaging methods has enabled major multi-site efforts to map the human connectome, which has heretofore been defined as containing all neural connections in the central nervous system (CNS). However, these efforts are not structured to examine the richness and complexity of the peripheral nervous system (PNS), which arguably forms the (neglected) rest of the connectome. Despite increasing interest in an atlas of the spinal cord (SC) and PNS which is simultaneously stereotactic, interactive, electronically dissectible, scalable, population-based and deformable, little attention has thus far been devoted to this task of critical importance. Nevertheless, the atlasing of these complete neural structures is essential for neurosurgical planning, neurological localization, and for mapping those components of the human connectome located outside of the CNS. Here we recommend a modification to the definition of the human connectome to include the SC and PNS, and argue for the creation of an inclusive atlas to complement current efforts to map the brain's human connectome, to enhance clinical education, and to assist progress in neuroscience research. In addition to providing a critical overview of existing neuroimaging techniques, image processing methodologies and algorithmic advances which can be combined for the creation of a full connectome atlas, we outline a blueprint for ultimately mapping the entire human nervous system and, thereby, for filling a critical gap in our scientific knowledge of neural connectivity.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles CA 90089, United States; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, United States.
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 485 McCormick Road, Gilmer Hall, Room 102, Charlottesville, Virginia 22903, United States; School of Data Science, University of Virginia, Dell 1, Charlottesville, Virginia 22903, United States.
| |
Collapse
|
3
|
Preisner F, Bäumer P, Wehrstein M, Friedmann-Bette B, Hackbusch M, Heiland S, Bendszus M, Kronlage M. Peripheral Nerve Diffusion Tensor Imaging : Interreader and Test-retest Reliability as Quantified by the Standard Error of Measurement. Clin Neuroradiol 2019; 30:679-689. [PMID: 31807812 DOI: 10.1007/s00062-019-00859-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/16/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE Diffusion tensor imaging (DTI) is increasingly being used in magnetic resonance neurography (MRN). The purpose of this study was to determine the interreader and test-retest reliability of peripheral nerve DTI in MRN with focus on the sciatic nerve. METHODS In this prospective study 27 healthy volunteers each underwent 3 scans of a short DTI protocol on separate days consisting of a T2-weighted turbo spin-echo and single-shot DTI sequence of the sciatic nerve of the dominant leg. The DTI parameters fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were obtained after manual nerve segmentation by two independent readers. Intraclass correlation coefficients (ICC), standard error of measurement (SEM), and Bland-Altman plots were calculated as measures for both interreader and test-retest agreement for all readout parameters. RESULTS The mean ± standard deviation was 0.507 ± 0.05 for FA, 1308.5 ± 162.4 × 10-6 mm2/s for MD, 905.6 ± 145.4 ×10-6 mm2/s for RD and 2114.1 ± 219.2 × 10-6 mm2/s for AD. The SEM for FA was 0.02 for interreader and test-retest agreement, the SEM for MD, RD, and AD ranged between 46.2 × 10-6 mm2/s (RD) and 70.1 × 10-6 mm2/s (AD) for interreader reliability and between 45.9 × 10-6 mm2/s (RD) and 70.1 × 10-6 mm2/s (AD) for test-retest reliability. The ICC for interreader reliability of DTI parameters ranged between 0.81 and 0.92 and ICC for test-retest reliability between 0.76 and 0.91. CONCLUSION Peripheral nerve DTI of the sciatic nerve is reliable and reproducible. The measures presented here may serve as first orientation values of measurement accuracy when interpreting parameters of sciatic nerve DTI.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Philipp Bäumer
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Center for Radiology Dia.log, Vinzenz-von-Paul Str. 8, 84503, Altötting, Germany
| | - Michaela Wehrstein
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Birgit Friedmann-Bette
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthes Hackbusch
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G. Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 2019; 225:85-119. [PMID: 31773331 DOI: 10.1007/s00429-019-01987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Τhe middle longitudinal fasciculus (MdLF) was initially identified in humans as a discrete subcortical pathway connecting the superior temporal gyrus (STG) to the angular gyrus (AG). Further anatomo-imaging studies, however, proposed more sophisticated but conflicting connectivity patterns and have created a vague perception on its functional anatomy. Our aim was, therefore, to investigate the ambiguous structural architecture of this tract through focused cadaveric dissections augmented by a tailored DTI protocol in healthy participants from the Human Connectome dataset. Three segments and connectivity patterns were consistently recorded: the MdLF-I, connecting the dorsolateral Temporal Pole (TP) and STG to the Superior Parietal Lobule/Precuneus, through the Heschl's gyrus; the MdLF-II, connecting the dorsolateral TP and the STG with the Parieto-occipital area through the posterior transverse gyri and the MdLF-III connecting the most anterior part of the TP to the posterior border of the occipital lobe through the AG. The lack of an established termination pattern to the AG and the fact that no significant leftward asymmetry is disclosed tend to shift the paradigm away from language function. Conversely, the theory of "where" and "what" auditory pathways, the essential relationship of the MdLF with the auditory cortex and the functional role of the cortical areas implicated in its connectivity tend to shift the paradigm towards auditory function. Allegedly, the MdLF-I and MdLF-II segments could underpin the perception of auditory representations; whereas, the MdLF-III could potentially subserve the integration of auditory and visual information.
Collapse
Affiliation(s)
- Aristotelis Kalyvas
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece. .,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece. .,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios P Skandalakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Liouta
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| | - Olympia Papakonstantinou
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| |
Collapse
|
5
|
Feasibility of Diffusion Tensor and Morphologic Imaging of Peripheral Nerves at Ultra-High Field Strength. Invest Radiol 2019; 53:705-713. [PMID: 29979328 PMCID: PMC6221405 DOI: 10.1097/rli.0000000000000492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental digital content is available in the text. Objectives The aim of this study was to describe the development of morphologic and diffusion tensor imaging sequences of peripheral nerves at 7 T, using carpal tunnel syndrome (CTS) as a model system of focal nerve injury. Materials and Methods Morphologic images were acquired at 7 T using a balanced steady-state free precession sequence. Diffusion tensor imaging was performed using single-shot echo-planar imaging and readout-segmented echo-planar imaging sequences. Different acquisition and postprocessing methods were compared to describe the optimal analysis pipeline. Magnetic resonance imaging parameters including cross-sectional areas, signal intensity, fractional anisotropy (FA), as well as mean, axial, and radial diffusivity were compared between patients with CTS (n = 8) and healthy controls (n = 6) using analyses of covariance corrected for age (significance set at P < 0.05). Pearson correlations with Bonferroni correction were used to determine association of magnetic resonance imaging parameters with clinical measures (significance set at P < 0.01). Results The 7 T acquisitions with high in-plane resolution (0.2 × 0.2mm) afforded detailed morphologic resolution of peripheral nerve fascicles. For diffusion tensor imaging, single-shot echo-planar imaging was more efficient than readout-segmented echo-planar imaging in terms of signal-to-noise ratio per unit scan time. Distortion artifacts were pronounced, but could be corrected during postprocessing. Registration of FA maps to the morphologic images was successful. The developed imaging and analysis pipeline identified lower median nerve FA (pisiform bone, 0.37 [SD 0.10]) and higher radial diffusivity (1.08 [0.20]) in patients with CTS compared with healthy controls (0.53 [0.06] and 0.78 [0.11], respectively, P < 0.047). Fractional anisotropy and radial diffusivity strongly correlated with patients' symptoms (r = −0.866 and 0.866, respectively, P = 0.005). Conclusions Our data demonstrate the feasibility of morphologic and diffusion peripheral nerve imaging at 7 T. Fractional anisotropy and radial diffusivity were found to be correlates of symptom severity.
Collapse
|
6
|
Martín Noguerol T, Barousse R, Gómez Cabrera M, Socolovsky M, Bencardino JT, Luna A. Functional MR Neurography in Evaluation of Peripheral Nerve Trauma and Postsurgical Assessment. Radiographics 2019; 39:427-446. [DOI: 10.1148/rg.2019180112] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Ho MJ, Ciritsis A, Manoliu A, Stieltjes B, Marcon M, Andreisek G, Kuhn FP. Diffusion Tensor Imaging of the Brachial Plexus: A Comparison between Readout-segmented and Conventional Single-shot Echo-planar Imaging. Magn Reson Med Sci 2018; 18:150-157. [PMID: 30416178 PMCID: PMC6460122 DOI: 10.2463/mrms.mp.2018-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: Diffusion tensor imaging (DTI) adds functional information to morphological magnetic resonance neurography (MRN) in the assessment of the brachial nerve plexus. To determine the most appropriate pulse sequence in scan times suited for diagnostic imaging in clinical routine, we compared image quality between simultaneous multi-slice readout-segmented (rs-DTI) and conventional single-shot (ss-DTI) echo-planar imaging techniques. Methods: Institutional Review Board (IRB) approved study including 10 healthy volunteers. The supraclavicular brachial plexus, covering the nerve roots and trunks from C5 to C7, was imaged on both sides with rs-DTI and ss-DTI. Both sequences were acquired in scan times <7 min with b-values of 900 s/mm2 and with isotropic spatial resolution. Results: In rs-DTI image, the overall quality was significantly better and distortion artifacts were significantly lower (P = 0.001–0.002 and P = 0.001–0.002, respectively) for both readers. In ss-DTI, a trend toward lower degree of ghosting and motion artifacts was elicited (reader 1, P = 0.121; reader 2, P = 0.264). No significant differences between the two DTI techniques were found for signal-to-noise ratios (SNR), contrast-to-noise ratios (CNR) and fractional anisotropy (FA) (P ≥ 0.475, P ≥ 0.624, and P ≥ 0.169, respectively). Interreader agreement for all examined parameters and all sequences ranged from intraclass correlation coefficient (ICC) 0.064 to 0.905 and Kappa 0.40 to 0.851. Conclusion: Incomparable acquisition times rs-DTI showed higher image quality and less distortion artifacts than ss-DTI. The trend toward a higher degree of ghosting and motion artifacts in rs-DTI did not deteriorate image quality to a significant degree. Thus, rs-DTI should be considered for functional MRN of the brachial plexus.
Collapse
Affiliation(s)
- Michael J Ho
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich.,Department of Neuroradiology, University Hospital Freiburg
| | - Alexander Ciritsis
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich
| | | | - Magda Marcon
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
| | | | - Felix Pierre Kuhn
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
| |
Collapse
|
8
|
Wako Y, Nakamura J, Hagiwara S, Miura M, Eguchi Y, Suzuki T, Orita S, Inage K, Kawarai Y, Sugano M, Nawata K, Yoshino K, Masuda Y, Matsumoto K, Ohtori S. Diffusion tensor imaging of the sciatic and femoral nerves in unilateral osteoarthritis of the hip and osteonecrosis of femoral head: Comparison of the affected and normal sides. Mod Rheumatol 2018; 29:693-699. [PMID: 29862862 DOI: 10.1080/14397595.2018.1484545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objective: The aim was to compare the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the sciatic and femoral nerves in patients with unilateral osteoarthritis of the hip (OA) and osteonecrosis of the femoral head (ONFH) using diffusion tensor imaging (DTI) and to investigate the mechanism of hip pain. Methods: Forty-four patients (22 OA and 22 ONFH) underwent DTI of the sciatic and femoral nerves at the level of the hip joint and the S1 roots to visualize the tractography and quantify the FA and ADC values. Results: The tractography of the femoral and the sciatic nerves on the affected side with OA and ONFH were similar to those on the normal side. The mean FA values of the sciatic and femoral nerves, and the S1 roots were 0.542, 0.551, and 0.316 with OA, 0.568, 0.560, and 0.318 with ONFH on the affected side, and 0.559, 0.560, and 0.315 on the normal side, respectively, and did not show significant differences. The FA values of the sciatic nerve on the affected side with OA decreased with longer pain duration. Conclusion: The FA and ADC values of the sciatic and femoral nerves in patients with unilateral OA and ONFH showed no significant differences between the affected and normal sides.
Collapse
Affiliation(s)
- Yasushi Wako
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Junichi Nakamura
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Shigeo Hagiwara
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Michiaki Miura
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Yawara Eguchi
- b Department of Orthopedic Surgery , National Hospital Organization Shimoshizu National Hospital , Chiba , Japan
| | - Takane Suzuki
- c Department of Bioenvironmentral Medicine, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Sumihisa Orita
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Kazuhide Inage
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Yuya Kawarai
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Masahiko Sugano
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Kento Nawata
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Kensuke Yoshino
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| | - Yoshitada Masuda
- d Department of Radiology , Chiba University Hospital , Chiba , Japan
| | - Koji Matsumoto
- d Department of Radiology , Chiba University Hospital , Chiba , Japan
| | - Seiji Ohtori
- a Department of Orthopedic Surgery, Graduate School of Medicine , Chiba University , Chiba , Japan
| |
Collapse
|
9
|
Evaluation of Reproducibility of Diffusion Tensor Imaging in the Brachial Plexus at 3.0 T. Invest Radiol 2018; 52:482-487. [PMID: 28291025 DOI: 10.1097/rli.0000000000000363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the reproducibility of 3 T magnetic resonance imaging diffusion tensor imaging (DTI) of the brachial plexus in healthy subjects. METHODS Ten healthy volunteers were included, and morphological and DTI sequences of the nerve roots of the brachial plexus from C5 to T1 of both sides were repeatedly acquired on a 3 T magnetic resonance system (MAGNETOM Skyra; Siemens Healthcare, Erlangen, Germany). A prototype diffusion-weighted single-shot echo-planar imaging sequence-enabling slice-specific shim adjustments was performed with b-values of 0 and 800 s/mm in 30 gradient directions, resulting in an acquisition time of about 6 minutes each in axial orientation. Between scans, subjects were moved and repositioned in the scanner, coils were reinserted, and new localizers were acquired. Image analysis was performed using MITK Diffusion software toolkit. Two independent readers performed diffusion data postprocessing, and regions of interest (ROIs) were set on the proximal postganglionic trunk at each spinal level, bilaterally to obtain values for fractional anisotropy (FA) and mean diffusivity (MD). Interreader and intrareader agreement as well as test-retest reproducibility of DTI metrics were assessed. RESULTS Intraclass correlation coefficients (ICCs) for interreader and intrareader agreement did not differ significantly between measurements for FA and MD. In particular, ICCs for interreader agreement of FA ranged from 0.741 to 0.961 and that of MD ranged from 0.802 to 0.998, and ICCs for intrareader agreement of FA ranged from 0.759 to 0.949 and that of MD ranged from 0.796 to 0.998. The test-retest reproducibility of DTI metrics showed an overall moderate to strong correlation (r > 0.707), with few minor exceptions, for both FA and MD values. CONCLUSIONS Diffusion tensor imaging metrics in the brachial plexus are reproducible. Future applications of DTI for a possible clinical use should be further investigated.
Collapse
|
10
|
Wako Y, Nakamura J, Eguchi Y, Hagiwara S, Miura M, Kawarai Y, Sugano M, Nawata K, Yoshino K, Toguchi Y, Masuda Y, Matsumoto K, Suzuki T, Orita S, Ohtori S. Diffusion tensor imaging and tractography of the sciatic and femoral nerves in healthy volunteers at 3T. J Orthop Surg Res 2017; 12:184. [PMID: 29187253 PMCID: PMC5707804 DOI: 10.1186/s13018-017-0690-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background The aim was to clarify the normal fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the sciatic and femoral nerves at the level of the hip joint and to visualize the neural tracts with diffusion tensor imaging (DTI). Methods Twenty-four healthy volunteers (12 men and 12 women, age 20–29 years) underwent DTI for visualization with tractography and quantification of FA and ADC values on a 3 Tesla MRI (b value = 800 s/mm2, motion probing gradient, 11 directions, time to repeat/echo time = 9000/72.6 ms, axial slice orientation, slice thickness = 3.0 mm with no inter-slice gap, field of view = 320 × 320 mm, 96 × 192 matrix, 75 slices, number of acquisitions = 4). Regions of interest in the sciatic nerve were defined at the femoral head, the S1 root, and the midpoint levels. The femoral nerve was evaluated at 3–4 cm proximal to the femoral head level. Results The tractography of the sciatic and femoral nerves were visualized in all participants. The mean FA values of the sciatic nerve were increased distally from the S1 root level, through the midpoint, and to the femoral head level (0.314, 0.446, 0.567, p = 0.001, respectively). The mean FA values of the femoral nerve were 0.565. The mean ADC values of the sciatic nerves were significantly lower in the S1 root level than in the midpoint and the femoral head level (1.481, 1.602, 1.591 × 10−3 × 10−3 mm2/s, p = 0.001, respectively). The ADC values of the femoral nerve were 1.439 × 10−3 mm2/s. FA and ADC values showed moderate to substantial inter- and intra-observer reliability without significant differences in gender or laterality. Conclusion Visualization and quantification of the sciatic and femoral nerves simultaneously around the hip joint were achieved in healthy young volunteers with DTI. Clinical application of DTI is expected to contribute to hip pain research.
Collapse
Affiliation(s)
- Yasushi Wako
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan.
| | - Junichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yawara Eguchi
- Department of Orthopedic Surgery, National Hospital Organization Shimoshizu National Hospital, 934-5, Shikawatashi, Yotsukaido city, Chiba, 284-0003, Japan
| | - Shigeo Hagiwara
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Michiaki Miura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yuya Kawarai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Masahiko Sugano
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Kento Nawata
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Kensuke Yoshino
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yasunari Toguchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yoshitada Masuda
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Sumihisa Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| |
Collapse
|
11
|
Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB. Peripheral nerve diffusion tensor imaging: Overview, pitfalls, and future directions. J Magn Reson Imaging 2017; 47:1171-1189. [DOI: 10.1002/jmri.25876] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tina Jeon
- Department of Radiology and Imaging; Hospital for Special Surgery; New York New York USA
| | - Maggie M. Fung
- MR Apps & Workflow; GE Healthcare; New York New York USA
| | - Kevin M. Koch
- Department of Radiology; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Ek T. Tan
- GE Global Research Center; Niskayuna New York USA
| | - Darryl B. Sneag
- Department of Radiology and Imaging; Hospital for Special Surgery; New York New York USA
| |
Collapse
|
12
|
Bretas EAS, Torres US, Torres LR, Bekhor D, Saito Filho CF, Racy DJ, Faggioni L, D'Ippolito G. Is liver perfusion CT reproducible? A study on intra- and interobserver agreement of normal hepatic haemodynamic parameters obtained with two different software packages. Br J Radiol 2017; 90:20170214. [PMID: 28830195 DOI: 10.1259/bjr.20170214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate the agreement between the measurements of perfusion CT parameters in normal livers by using two different software packages. METHODS This retrospective study was based on 78 liver perfusion CT examinations acquired for detecting suspected liver metastasis. Patients with any morphological or functional hepatic abnormalities were excluded. The final analysis included 37 patients (59.7 ± 14.9 y). Two readers (1 and 2) independently measured perfusion parameters using different software packages from two major manufacturers (A and B). Arterial perfusion (AP) and portal perfusion (PP) were determined using the dual-input vascular one-compartmental model. Inter-reader agreement for each package and intrareader agreement between both packages were assessed with intraclass correlation coefficients (ICC) and Bland-Altman statistics. RESULTS Inter-reader agreement was substantial for AP using software A (ICC = 0.82) and B (ICC = 0.85-0.86), fair for PP using software A (ICC = 0.44) and fair to moderate for PP using software B (ICC = 0.56-0.77). Intrareader agreement between software A and B ranged from slight to moderate (ICC = 0.32-0.62) for readers 1 and 2 considering the AP parameters, and from fair to moderate (ICC = 0.40-0.69) for readers 1 and 2 considering the PP parameters. CONCLUSION At best there was only moderate agreement between both software packages, resulting in some uncertainty and suboptimal reproducibility. Advances in knowledge: Software-dependent factors may contribute to variance in perfusion measurements, demanding further technical improvements. AP measurements seem to be the most reproducible parameter to be adopted when evaluating liver perfusion CT.
Collapse
Affiliation(s)
- Elisa Almeida Sathler Bretas
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil.,2 Department of Radiology, Grupo Fleury, São Paulo, Brazil
| | | | - Lucas Rios Torres
- 2 Department of Radiology, Grupo Fleury, São Paulo, Brazil.,3 Department of Imaging, Hospital Beneficência Portuguesa, São Paulo, Brazil
| | - Daniel Bekhor
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Douglas Jorge Racy
- 3 Department of Imaging, Hospital Beneficência Portuguesa, São Paulo, Brazil
| | - Lorenzo Faggioni
- 4 Department of Diagnostic and Interventional Radiology, University Hospital of Pisa, Pisa, Italy
| | - Giuseppe D'Ippolito
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil.,2 Department of Radiology, Grupo Fleury, São Paulo, Brazil
| |
Collapse
|
13
|
Manoliu A, Ho M, Piccirelli M, Nanz D, Filli L, Dappa E, Liu W, Ettlin DA, Boss A, Andreisek G, Kuhn FP. Simultaneous multislice readout-segmented echo planar imaging for accelerated diffusion tensor imaging of the mandibular nerve: A feasibility study. J Magn Reson Imaging 2017; 46:663-677. [DOI: 10.1002/jmri.25603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023] Open
Affiliation(s)
- Andrei Manoliu
- Institute for Diagnostic and Interventional Radiology, Department of Radiology; University Hospital Zurich, University of Zurich; Zurich Switzerland
- Psychiatric University Hospital, Department of Psychiatry, Psychotherapy and Psychosomatics; University of Zurich; Zurich Switzerland
| | - Michael Ho
- Institute for Diagnostic and Interventional Radiology, Department of Radiology; University Hospital Zurich, University of Zurich; Zurich Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, University Hospital Zurich; University of Zurich; Zurich Switzerland
| | - Daniel Nanz
- Institute for Diagnostic and Interventional Radiology, Department of Radiology; University Hospital Zurich, University of Zurich; Zurich Switzerland
| | - Lukas Filli
- Institute for Diagnostic and Interventional Radiology, Department of Radiology; University Hospital Zurich, University of Zurich; Zurich Switzerland
| | - Evelyn Dappa
- Institute for Diagnostic and Interventional Radiology, Department of Radiology; University Hospital Zurich, University of Zurich; Zurich Switzerland
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd; Shenzhen China
| | | | - Andreas Boss
- Institute for Diagnostic and Interventional Radiology, Department of Radiology; University Hospital Zurich, University of Zurich; Zurich Switzerland
| | - Gustav Andreisek
- Institute for Diagnostic and Interventional Radiology, Department of Radiology; University Hospital Zurich, University of Zurich; Zurich Switzerland
| | - Felix P. Kuhn
- Institute for Diagnostic and Interventional Radiology, Department of Radiology; University Hospital Zurich, University of Zurich; Zurich Switzerland
| |
Collapse
|
14
|
Christidi F, Karavasilis E, Samiotis K, Bisdas S, Papanikolaou N. Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts. Eur J Radiol Open 2016; 3:153-61. [PMID: 27489869 PMCID: PMC4959946 DOI: 10.1016/j.ejro.2016.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Diffusion tensor imaging (DTI) enables in vivo reconstruction of white matter (WM) pathways. Considering the emergence of numerous models and fiber tracking techniques, we herein aimed to compare, both quantitatively and qualitatively, the fiber tracking results of four DTI software (Brainance, Philips FiberTrak, DSI Studio, NordicICE) on the reconstruction of representative WM tracts. MATERIALS AND METHODS Ten healthy participants underwent 30-directional diffusion tensor imaging on a 3T-Philips Achieva TX MR-scanner. All data were analyzed by two independent sites of experienced raters with the aforementioned software and the following WM tracts were reconstructed: corticospinal tract (CST); forceps major (Fmajor); forceps minor (Fminor); cingulum bundle (CB); superior longitudinal fasciculus (SLF); inferior fronto-occipital fasciculus (IFOF). Visual inspection of the resulted tracts and statistical analysis (inter-rater and betweensoftware agreement; paired t-test) on fractional anisotropy (FA), axial and radial diffusivity (Daxial, Dradial) were applied for qualitative and quantitative evaluation of DTI software results. RESULTS Qualitative evaluation of the extracted tracts confirmed anatomical landmarks at least for the core part of each tract, even though differences in the number of fibers extracted and the whole tract were evident, especially for the CST, Fmajor, Fminor and SLF. Descriptive values did not deviate from the expected range of values for healthy adult population. Substantial inter-rater agreement (intraclass correlation coefficient [ICC], Bland-Altman analysis) was found for all tracts (ICC; FA: 0.839-0.989, Daxial: 0.704-0.991, Dradial: 0.972-0.993). Low agreement for FA, Daxial and Dradial (ICC; Bland-Altman analysis) and significant paired t-test differences (p < 0.05) were detected regarding between-software agreement. CONCLUSIONS Qualitative comparison of four different DTI software in addition to substantial inter-rater but poor between-software agreement highlight the differences on existing fiber tracking methodologies and several particularities of each WM tract, further supporting the need for further study in both clinical and research settings.
Collapse
Affiliation(s)
- Foteini Christidi
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Efstratios Karavasilis
- 2nd Department of Radiology, University General Hospital 'Attikon', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Sotirios Bisdas
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | | |
Collapse
|
15
|
Heckel A, Weiler M, Xia A, Ruetters M, Pham M, Bendszus M, Heiland S, Baeumer P. Peripheral Nerve Diffusion Tensor Imaging: Assessment of Axon and Myelin Sheath Integrity. PLoS One 2015; 10:e0130833. [PMID: 26114630 PMCID: PMC4482724 DOI: 10.1371/journal.pone.0130833] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate the potential of diffusion tensor imaging (DTI) parameters as in-vivo biomarkers of axon and myelin sheath integrity of the median nerve in the carpal tunnel as validated by correlation with electrophysiology. Methods MRI examinations at 3T including DTI were conducted on wrists in 30 healthy subjects. After manual segmentation of the median nerve quantitative analysis of fractional anisotropy (FA) as well as axial, radial and mean diffusivity (AD, RD, and MD) was carried out. Pairwise Pearson correlations with electrophysiological parameters comprising sensory nerve action potential (SNAP) and compound muscle action potential (CMAP) as markers of axon integrity, and distal motor latency (dml) and sensory nerve conduction velocity (sNCV) as markers of myelin sheath integrity were computed. The significance criterion was set at P=0.05, Bonferroni corrected for multiple comparisons. Results DTI parameters showed a distinct proximal-to-distal profile with FA, MD, and RD extrema coinciding in the center of the carpal tunnel. AD correlated with CMAP (r=0.50, p=0.04, Bonf. corr.) but not with markers of myelin sheath integrity. RD correlated with sNCV (r=-0.53, p=0.02, Bonf. corr.) but not with markers of axon integrity. FA correlated with dml (r=-0.63, p=0.002, Bonf. corr.) and sNCV (r=0.68, p=0.001, Bonf. corr.) but not with markers of axon integrity. Conclusion AD reflects axon integrity, while RD (and FA) reflect myelin sheath integrity as validated by correlation with electrophysiology. DTI parameters consistently indicate a slight decrease of structural integrity in the carpal tunnel as a physiological site of median nerve entrapment. DTI is particularly sensitive, since these findings are observed in healthy participants. Our results encourage future studies to evaluate the potential of DTI in differentiating axon from myelin sheath injury in patients with manifest peripheral neuropathies.
Collapse
Affiliation(s)
- A Heckel
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany; Department of Diagnostic Radiology, Freiburg University Hospital, Freiburg, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Xia
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Ruetters
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Pham
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - S Heiland
- Section of Experimental Neuroradiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - P Baeumer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
16
|
Bäumer P, Pham M, Ruetters M, Heiland S, Heckel A, Radbruch A, Bendszus M, Weiler M. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 2014; 273:185-93. [PMID: 24844471 DOI: 10.1148/radiol.14132837] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate the ability of diffusion-tensor imaging (DTI) and T2 to help detect the mildest nerve lesion conceivable, that is, subclinical ulnar neuropathy at the elbow. MATERIALS AND METHODS This prospective study was approved by the institutional ethics board. Written informed consent was obtained from all participants. Magnetic resonance neurography was performed at 3.0 T by using proton density- and T2-weighted relaxometry and DTI on elbows in 30 healthy subjects without clinical evidence of neuropathy. Quantitative analysis of ulnar nerve T2 and fractional anisotropy (FA) was performed, and T2 and FA values were correlated to electrical nerve conduction velocities (NCVs) with Pearson correlation analysis. Additional qualitative assessment of T2-weighted and FA images was performed by two readers, and sensitivity and specificity were calculated. RESULTS Ten of the 30 subjects (33%) had NCV slowing across the elbow segment. Compared with subjects without NCV slowing, subjects with slowing had decreased FA values (0.51 ± 0.09 vs 0.41 ± 0.07, respectively; P = .006) and increased T2 values (64.2 msec ± 10.9 vs 76.2 msec ± 13.7, respectively; P = .01) in the proximal ulnar sulcus. FA values showed a significant correlation (P = .01) with NCV slowing over the sulcus as an electrophysiologic indicator of myelin sheath damage. Qualitative assessment of FA maps and T2-weighted images helped identify subjects with conduction slowing with a sensitivity of 80% and 55%, respectively, and a specificity of 83% and 63%. CONCLUSION FA maps can accurately depict even mild peripheral neuropathy and perform better than the current standard of reference, T2-weighted images. DTI may therefore add diagnostic value as a highly sensitive technique for the detection of peripheral neuropathy.
Collapse
Affiliation(s)
- Philipp Bäumer
- From the Department of Neuroradiology (P.B., M.P., M.R., A.H., A.R., M.B.), Section of Experimental Neuroradiology, Department of Neuroradiology (S.H.), and Department of Neurology (M.W.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; and Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany (M.W.)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Naraghi A, da Gama Lobo L, Menezes R, Khanna M, Sussman M, Anastakis D, White LM. Diffusion tensor imaging of the median nerve before and after carpal tunnel release in patients with carpal tunnel syndrome: feasibility study. Skeletal Radiol 2013; 42:1403-12. [PMID: 23842572 DOI: 10.1007/s00256-013-1670-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To evaluate diffusion tensor imaging (DTI) indices of the median nerve pre and postoperatively in patients with carpal tunnel syndrome (CTS) to determine whether indices acquired prior to surgery differ from those acquired postoperatively. METHODS Following IRB approval, ten patients with a diagnosis of CTS were prospectively recruited. Eight patients completed the study (seven women, one man). All had bilateral asymmetric symptoms, with subsequent carpal tunnel release on the more symptomatic side. DTI of both wrists were performed using single-shot spin-echo echo-planar imaging (TR/TE, 7,000/103 ms; b value 1,025 s/mm(2)) preoperatively, 6 weeks and 6 months after carpal tunnel release. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the median nerve at the level of the distal radioulnar joint and pisiform were determined by one investigator blinded to clinical data, side, and time relative to surgery. RESULTS All patients had resolution of symptoms on the surgical side at 6 months. A significant increase in FA (p = 0.018) and decrease in ADC (p = 0.017) were found proximally at 6 months compared to baseline on the operative side. A significant increase in FA was observed on the operative side distally at 6 weeks (p = 0.012) and 6 months (p = 0.017). There was a significant difference in the percentage change in FA values from baseline to 6 months on the operative side in comparison with the non-operative side (p = 0.017). CONCLUSIONS A significant increase in FA and decrease in ADC of the median nerve are seen following decompression surgery in patients with CTS.
Collapse
Affiliation(s)
- Ali Naraghi
- Department of Medical Imaging, University of Toronto, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada.
| | | | | | | | | | | | | |
Collapse
|
18
|
Guggenberger R, Nanz D, Bussmann L, Chhabra A, Fischer MA, Hodler J, Pfirrmann CWA, Andreisek G. Diffusion tensor imaging of the median nerve at 3.0T using different MR scanners: Agreement of FA and ADC measurements. Eur J Radiol 2013; 82:e590-6. [PMID: 23768611 DOI: 10.1016/j.ejrad.2013.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/25/2013] [Accepted: 05/12/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Roman Guggenberger
- Department of Radiology, University Hospital, Raemistrasse 100, Zurich, 8091, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVE The objective of this study was to examine the feasibility of diffusion tensor imaging and diffusion tensor tractography (DTT) at 1.5 T for the detection of nerve root avulsions in patients with brachial plexus injuries (BPI). MATERIALS AND METHODS We performed a 1.5-T magnetic resonance imaging on 28 patients (mean [SD] age, 25 [9.1]) with BPI using the following imaging protocol: (a) magnetic resonance myelography (MRM), (b) magnetic resonance neurography, and (c) diffusion tensor imaging. A reproducible tractography approach was developed to assess the myeloradicular continuity, which consists of multiple regions of interests placed on each hemicord, including the ventral and dorsal rootlets from C4 to T2 nerve roots. Two independent observers blindly evaluated DTT and MRM studies. The degree of agreement between DTT and MRM findings was estimated on a per-root basis on the 140 nerve roots (C5-T1) on the injured side by calculation of the κ coefficient (K value) and the Bland-Altman plot analysis. The diagnostic accuracy of DTT was assessed by comparing it with the MRM findings of the 140 nerve roots on the injured side on a per-root basis. RESULTS Diffusion tensor tractography allowed a complete visualization of the C5-T1 intact nerve roots on the normal side in 100% of studies.Complete nerve root avulsions were recognized on DTT either as a total loss of fibers or as a very short segment of incoherent fibers in apparent continuity with the spinal cord.The MRM identified 88 intact nerve roots (62.9%), 44 completely avulsed nerve roots (31.4%), and 8 partially avulsed nerve roots (5.7%). The DTT and MRM were concordant in 127 of the 140 nerve roots (90.7%) and exhibited an excellent overall agreement (K value, 80.8). The brachial plexus DTT had an 88.1% sensitivity, 98.1% positive predictive value, 98.8% specificity, 92.6 negative predictive value, and a 94.5% overall accuracy for detecting the presence of a nerve root avulsion. The κ coefficients for the interobserver reliability of DTT and MRM were 0.85 and 0.80, respectively. CONCLUSIONS Our results suggest that cervical nerve root avulsions can be successfully visualized at 1.5 T in patients with BPI despite the anatomical complexity and susceptibility and motion artifacts. We propose that DTT is a reliable and reproducible method for the investigation of BPI because it provides a successful anatomical and functional display of neural structures that are not otherwise attainable with conventional studies.
Collapse
|
20
|
Abstract
A tailored review of peer-reviewed abstracts presented at the 2010 Radiological Society of North America (RSNA) Annual Meeting was performed following oral presentation. This review will highlight 15 formal and informal scientific paper presentations focusing on three main topics: (1) 3D isotropic MR imaging of joints, (2) diffusion tensor imaging of peripheral nerves, and (3) dual-energy CT in the diagnosis of Gout.
Collapse
Affiliation(s)
- Jenny T Bencardino
- Department of Radiology, NYU Hospital for Joint Diseases, 301 East 17th Street, New York, NY 10003, USA.
| |
Collapse
|