1
|
Dalili D, Isaac A, Fritz J. Selective MR neurography-guided lumbosacral plexus perineural injections: techniques, targets, and territories. Skeletal Radiol 2023; 52:1929-1947. [PMID: 37495713 DOI: 10.1007/s00256-023-04384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/28/2023]
Abstract
The T12 to S4 spinal nerves form the lumbosacral plexus in the retroperitoneum, providing sensory and motor innervation to the pelvis and lower extremities. The lumbosacral plexus has a wide range of anatomic variations and interchange of fibers between nerve anastomoses. Neuropathies of the lumbosacral plexus cause a broad spectrum of complex pelvic and lower extremity pain syndromes, which can be challenging to diagnose and treat successfully. In their workup, selective nerve blocks are employed to test the hypothesis that a lumbosacral plexus nerve contributes to a suspected pelvic and extremity pain syndrome, whereas therapeutic perineural injections aim to alleviate pain and paresthesia symptoms. While the sciatic and femoral nerves are large in caliber, the iliohypogastric and ilioinguinal, genitofemoral, lateral femoral cutaneous, anterior femoral cutaneous, posterior femoral cutaneous, obturator, and pudendal nerves are small, measuring a few millimeters in diameter and have a wide range of anatomic variants. Due to their minuteness, direct visualization of the smaller lumbosacral plexus branches can be difficult during selective nerve blocks, particularly in deeper pelvic locations or larger patients. In this setting, the high spatial and contrast resolution of interventional MR neurography guidance benefits nerve visualization and targeting, needle placement, and visualization of perineural injectant distribution, providing a highly accurate alternative to more commonly used ultrasonography, fluoroscopy, and computed tomography guidance for perineural injections. This article offers a practical guide for MR neurography-guided lumbosacral plexus perineural injections, including interventional setup, pulse sequence protocols, lumbosacral plexus MR neurography anatomy, anatomic variations, and injection targets.
Collapse
Affiliation(s)
- Danoob Dalili
- Academic Surgical Unit, Southwest London Elective Orthopaedic Centre (SWLEOC), Dorking Road, Epsom, KT18 7EG, London, UK
- Department of Radiology, Epsom and St Hellier University Hospitals NHS Trust, Dorking Road, Epsom, London, KT18 7EG, UK
| | - Amanda Isaac
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, NY, USA.
| |
Collapse
|
2
|
Recht MP, White LM, Fritz J, Resnick DL. Advances in Musculoskeletal Imaging: Recent Developments and Predictions for the Future. Radiology 2023; 308:e230615. [PMID: 37642575 DOI: 10.1148/radiol.230615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
- Michael P Recht
- From the Department of Radiology, NYU Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016 (M.P.R., J.F.); Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, Toronto, Canada (L.M.W.); and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Lawrence M White
- From the Department of Radiology, NYU Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016 (M.P.R., J.F.); Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, Toronto, Canada (L.M.W.); and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Jan Fritz
- From the Department of Radiology, NYU Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016 (M.P.R., J.F.); Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, Toronto, Canada (L.M.W.); and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Donald L Resnick
- From the Department of Radiology, NYU Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016 (M.P.R., J.F.); Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, Toronto, Canada (L.M.W.); and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| |
Collapse
|
3
|
Dalili D, Isaac A, Fritz J. MRI-guided sacroiliac joint injections in children and adults: current practice and future developments. Skeletal Radiol 2023; 52:951-965. [PMID: 36006462 DOI: 10.1007/s00256-022-04161-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/02/2023]
Abstract
Common etiologies of low back pain include degenerative arthrosis and inflammatory arthropathy of the sacroiliac joints. The diagnostic workup revolves around identifying and confirming the sacroiliac joints as a pain generator. Diagnostic sacroiliac joint injections often serve as functional additions to the diagnostic workup through eliciting a pain response that tests the hypothesis that the sacroiliac joints do or do not contribute to the patient's pain syndrome. Therapeutic sacroiliac joint injections aim to provide medium- to long-term relief of symptoms and reduce inflammatory activity and, ultimately, irreversible structural damage. Ultrasonography, fluoroscopy, computed tomography, and magnetic resonance imaging (MRI) may be used to guide sacroiliac joint injections. The populations that may benefit most from MRI-guided sacroiliac joint procedures include children, adolescents, adults of childbearing age, and patients receiving serial injections due to the ability of interventional MRI to avoid radiation exposure. Most clinical wide-bore MRI systems can be used for MRI-guided sacroiliac joint injections. Turbo spin echo pulse sequences optimized for interventional needle display visualize the needle tip with an error margin of < 1 mm or less. Published success rates of intra-articular sacroiliac joint drug delivery with MRI guidance range between 87 and 100%. The time required for MR-guided sacroiliac joint injections in adults range between 23-35 min and 40 min in children. In this article, we describe techniques for MRI-guided sacroiliac joint injections, share our practice of incorporating interventional MRI in the care of patients with sacroiliac joint mediated pain, discuss the rationales, benefits, and limitations of interventional MRI, and conclude with future developments.
Collapse
Affiliation(s)
- Danoob Dalili
- Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), Dorking Road, KT18 7EG, London, UK
| | - Amanda Isaac
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Diagnostic and Interventional Radiology, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, 660 1st Ave, 3rd Floor, Rm 313, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Bauones S, Cazzato RL, Dalili D, Koch G, Garnon J, Gantzer J, Kurtz JE, Gangi A. Precision pain management in interventional radiology. Clin Radiol 2023; 78:270-278. [PMID: 36931782 DOI: 10.1016/j.crad.2022.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 03/17/2023]
Abstract
Pain is a common manifestation of several benign and malignant conditions. Inadequate response to conservative therapies is often succeeded by incremental use of analgesics and opioids; however, such an approach is often ineffective, not well tolerated by patients, and carries the risk of addiction leading to the opioid crisis. Implementing minimally invasive percutaneous procedures, performed by interventional radiologists has proven to be successful in providing safe, effective, and patient-specific therapies across a wide range of painful conditions. In the present narrative review, we will review the repertoire of minimally invasive imaging guided interventions, which have been successfully used to treat common painful benign and malignant conditions. We briefly describe each technique, common indications, and expected results.
Collapse
Affiliation(s)
- S Bauones
- Medical Imaging Administration, Musculoskeletal Imaging Department (AlAwaji, Banuones), King Fahad Medical City, Riyadh, Saudi Arabia; Radiology and Medical Imaging Department (Alsaadi), College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz Alkharj, Saudi Arabia
| | - R L Cazzato
- Department of Interventional Radiology, University Hospital of Strasbourg, 67000, Strasbourg, France; Department of Medical Oncology, Strasbourg-Europe Cancer Institute (ICANS), 67033, Strasbourg, France.
| | - D Dalili
- Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), Dorking Road, Epsom, London, KT18 7EG, UK; Department of Diagnostic and Interventional Radiology, Epsom and St Helier University Hospitals NHS Trust, Dorking Road, Epsom, KT18 7EG, UK
| | - G Koch
- Department of Interventional Radiology, University Hospital of Strasbourg, 67000, Strasbourg, France; Institut of Human Anatomy, University Hospital of Strasbourg, 67000, Strasbourg, France
| | - J Garnon
- Department of Interventional Radiology, University Hospital of Strasbourg, 67000, Strasbourg, France
| | - J Gantzer
- Department of Medical Oncology, Strasbourg-Europe Cancer Institute (ICANS), 67033, Strasbourg, France; Department of Cancer and Functional Genomics INSERM UMR_S1258, Institute of Genetics and of Molecular and Cellular Biology, 67400, Illkirch, France
| | - J E Kurtz
- Department of Medical Oncology, Strasbourg-Europe Cancer Institute (ICANS), 67033, Strasbourg, France
| | - A Gangi
- Department of Interventional Radiology, University Hospital of Strasbourg, 67000, Strasbourg, France; School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, WC2R 2LS, UK
| |
Collapse
|