1
|
Ko KY, Wu YW. New approach for cardiac insulin resistance assessment using nuclear imaging: Moving research closer to practice. J Nucl Cardiol 2022; 29:1430-1433. [PMID: 33686581 DOI: 10.1007/s12350-021-02566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Wen Wu
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Perret P, Slimani L, Barone-Rochette G, Vollaire J, Briat A, Ahmadi M, Henri M, Desruet MD, Clerc R, Broisat A, Riou L, Boucher F, Frouin F, Djaileb L, Calizzano A, Vanzetto G, Fagret D, Ghezzi C. Preclinical and clinical evaluation of a new method to assess cardiac insulin resistance using nuclear imaging. J Nucl Cardiol 2022; 29:1419-1429. [PMID: 33502690 DOI: 10.1007/s12350-020-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Myocardial insulin resistance (IR) could be a predictive factor of cardiovascular events. This study aimed to introduce a new method using 123I-6-deoxy-6-iodo-D-glucose (6DIG), a pure tracer of glucose transport, for the assessment of IR using cardiac dynamic nuclear imaging. METHODS The protocol evaluated first in rat-models consisted in two 6DIG injections and one of insulin associated with planar imaging and blood sampling. Compartmental modeling was used to analyze 6DIG kinetics in basal and insulin conditions and to obtain an index of IR. As a part of a translational approach, a clinical study was then performed in 5 healthy and 6 diabetic volunteers. RESULTS In rodent models, the method revealed reproducible when performed twice at 7 days apart in the same animal. Rosiglitazone, an insulin-sensitizing drug, induced a significant increase of myocardial IR index in obese Zucker rats from 0.96 ± 0.18 to 2.26 ± 0.44 (P<.05) after 7 days of an oral treatment, and 6DIG IR indexes correlated with the gold standard IR index obtained through the hyperinsulinemic-euglycemic clamp (r=.68, P<.02). In human, a factorial analysis was applied on images to obtain vascular and myocardial kinetics before compartmental modeling. 1.5-fold to 2.2-fold decreases in mean cardiac IR indexes from healthy to diabetic volunteers were observed without reaching statistical significance. CONCLUSIONS These preclinical results demonstrate the reproducibility and sensibility of this novel imaging methodology. Although this first in-human study showed that this new method could be rapidly performed, larger studies need to be planned in order to confirm its performance.
Collapse
Affiliation(s)
- Pascale Perret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France.
| | - Lotfi Slimani
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | | | - Julien Vollaire
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Arnaud Briat
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Mitra Ahmadi
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Marion Henri
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | | | - Romain Clerc
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Alexis Broisat
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Laurent Riou
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - François Boucher
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France
| | | | - Loïc Djaileb
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Alex Calizzano
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Gérald Vanzetto
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Daniel Fagret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Catherine Ghezzi
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| |
Collapse
|
3
|
Contribution of Impaired Insulin Signaling to the Pathogenesis of Diabetic Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20112833. [PMID: 31212580 PMCID: PMC6600234 DOI: 10.3390/ijms20112833] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) has emerged as a relevant cause of heart failure among the diabetic population. Defined as a cardiac dysfunction that develops in diabetic patients independently of other major cardiovascular risks factors, such as high blood pressure and coronary artery disease, the underlying cause of DCMremains to be unveiled. Several pathogenic factors, including glucose and lipid toxicity, mitochondrial dysfunction, increased oxidative stress, sustained activation of the renin-angiotensin system (RAS) or altered calcium homeostasis, have been shown to contribute to the structural and functional alterations that characterize diabetic hearts. However, all these pathogenic mechanisms appear to stem from the metabolic inflexibility imposed by insulin resistance or lack of insulin signaling. This results in absolute reliance on fatty acids for the synthesis of ATP and impairment of glucose oxidation. Glucose is then rerouted to other metabolic pathways, with harmful effects on cardiomyocyte function. Here, we discuss the role that impaired cardiac insulin signaling in diabetic or insulin-resistant individuals plays in the onset and progression of DCM.
Collapse
|
4
|
Safety, Biodistribution, and Dosimetry of 123I-6-Deoxy-6-Iodo-D-Glucose, a Tracer of Glucose Transport, in Healthy and Diabetic Volunteers. Clin Nucl Med 2019; 44:386-393. [PMID: 30888989 DOI: 10.1097/rlu.0000000000002510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Insulin resistance is a key feature of the metabolic syndrome and type 2 diabetes, in which noninvasive assessment is not currently allowed by any methodology. We previously validated an iodinated tracer of glucose transport (6DIG) and a new methodology for the in vivo quantification of cardiac insulin resistance in rodents. The aim of this study was to investigate the safety, biodistribution, and radiation dosimetry of this method using I-6DIG in 5 healthy and 6 diabetic volunteers. METHODS The collection of adverse effects (AEs) and medical supervision of vital parameters and biological variables allowed the safety evaluation. Biodistribution was studied by sequentially acquiring whole-body images at 1, 2, 4, 8, and 24 hours postinjection. The total number of disintegrations in each organ normalized to the injected activity was calculated as the area under the time-activity curves. Dosimetry calculations were performed using OLINDA/EXM. RESULTS No major adverse events were observed. The average dose corresponding to the 2 injections of I-6DIG used in the protocol was 182.1 ± 7.5 MBq. A fast blood clearance of I-6DIG was observed. The main route of elimination was urinary, with greater than 50% of urine activity over 24 hours. No blood or urine metabolite was detected. I-6DIG accumulation mostly occurred in elimination organs such as kidneys and liver. Mean radiation dosimetry calculations indicated an effective whole-body absorbed dose of 3.35 ± 0.57 mSv for the whole procedure. CONCLUSIONS I-6DIG was well tolerated in human with a dosimetry profile comparable to that of other commonly used iodinated tracers, thereby allowing further clinical development of the tracer.
Collapse
|
5
|
Abstract
Facilitative carbohydrate transporters-Gluts-have received wide attention over decades due to their essential role in nutrient uptake and links with various metabolic disorders, including diabetes, obesity, and cancer. Endeavors directed towards understanding the mechanisms of Glut-mediated nutrient uptake have resulted in a multidisciplinary research field spanning protein chemistry, chemical biology, organic synthesis, crystallography, and biomolecular modeling. Gluts became attractive targets for cancer research and medicinal chemistry, leading to the development of new approaches to cancer diagnostics and providing avenues for cancer-targeting therapeutics. In this review, the current state of knowledge of the molecular interactions behind Glut-mediated sugar uptake, Glut-targeting probes, therapeutics, and inhibitors are discussed.
Collapse
Affiliation(s)
- Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Joseph R Fedie
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
6
|
Mellor KM, Bell JR, Ritchie RH, Delbridge LMD. Myocardial insulin resistance, metabolic stress and autophagy in diabetes. Clin Exp Pharmacol Physiol 2013; 40:56-61. [PMID: 22804725 DOI: 10.1111/j.1440-1681.2012.05738.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/19/2023]
Abstract
Clinical studies in humans strongly support a link between insulin resistance and non-ischaemic heart failure. The occurrence of a specific insulin-resistant cardiomyopathy, independent of vascular abnormalities, is now recognized. The progression of cardiac pathology linked with insulin resistance is poorly understood. Cardiac insulin resistance is characterized by reduced availability of sarcolemmal Glut-4 transporters and consequent lower glucose uptake. A shift away from glycolysis towards fatty acid oxidation for ATP supply is apparent and is associated with myocardial oxidative stress. Reliance of cardiomyocyte excitation-contraction coupling on glycolytically derived ATP supply potentially renders cardiac function vulnerable to the metabolic remodelling adaptations observed in diabetes development. Findings from Glut-4-knockout mice demonstrate that cardiomyocytes with extreme glucose uptake deficiency exhibit cardiac hypertrophy and marked excitation-contraction coupling abnormalities characterized by reduced sarcolemmal Ca(2+) influx and sarcoplasmic reticulum Ca(2+) uptake. The 'milder' phenotype fructose-fed mouse model of type 2 diabetes does not show evidence of cardiac hypertrophy, but cardiomyocyte loss linked with autophagic activation is evident. Fructose feeding induces a marked reduction in intracellular Ca(2+) availability with myofilament adaptation to preserve contractile function in this setting. The cardiac metabolic adaptations of two load-independent models of diabetes, namely the Glut-4-deficient mouse and the fructose-fed mouse are contrasted. The role of autophagy in diabetic cardiopathology is evaluated and anomalies of type 1 versus type 2 diabetic autophagic responses are highlighted.
Collapse
Affiliation(s)
- Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|